Surfaces in computer aided geometric design: a survey with new results

'Surfaces in Computer Aided Geometric Design' focuses on the representation and design of surfaces in a computer graphics environment. This new area has the dual attractions of interesting research problems and important applications. The subject can be approached from two points of view: The design of surfaces which includes the interactive modification of geometric information and the representation of surfaces for which the geometric information is relatively fixed. Design takes place in 3-space whereas representation can be higher dimensional. 'Surfaces in CAGD' can be traced from its inception in rectangular Coons patches and Bezier patches to triangular patches which are current research topics. Triangular patches can interpolate and approximate to arbitrarily located data and require the preprocessing steps of triangulation and derivative estimation. New contouring methods have been found using these triangular patches. Finally, multidimensional interpolation schemes have been based on tetrahedral interpolants and are illustrated by surfaces in 4-space by means of color computer graphics.

[1]  Robert E. Barnhill,et al.  Smooth interpolation over hypercubes , 1984, Comput. Aided Geom. Des..

[2]  R. Barnhill,et al.  A new twist in computer aided geometric design , 1978 .

[3]  Robert E. Barnhill,et al.  A geometric interpretation of convexity conditions for surfaces , 1984, Comput. Aided Geom. Des..

[4]  G. Farin,et al.  C1 quintic interpolation over triangles: Two explicit representations , 1981 .

[5]  R. E. Barnhill,et al.  Computer-aided surface representation and design , 1984 .

[6]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[7]  Robert Barnhill,et al.  A survey of the representation and design of surfaces , 1983, IEEE Computer Graphics and Applications.

[8]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[9]  W. J. Gordon Blending-Function Methods of Bivariate and Multivariate Interpolation and Approximation , 1971 .

[10]  Peter Alfeld,et al.  A bivariate C2 Clough-Tocher scheme , 1984, Comput. Aided Geom. Des..

[11]  Carl S. Petersen Adaptive contouring of three-dimensional surfaces , 1984, Comput. Aided Geom. Des..

[12]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[13]  Andrew J. Worsey C2 interpolation over hypercubes , 1985, Comput. Aided Geom. Des..

[14]  L. Schumaker Fitting surfaces to scattered data , 1976 .

[15]  P Alfeld Multivariate Scattered Data Derivative Generation by Functional Minimization , 1984 .

[16]  James D. Foley,et al.  Fundamentals of interactive computer graphics , 1982 .

[17]  Charles Christian Poeppelmeier A boolean sum interpolation scheme to random data for computer aided geometric design , 1975 .

[18]  G. Nielson The side-vertex method for interpolation in triangles☆ , 1979 .

[19]  G A Keyworth Federal R & D and Industrial Policy , 1983, Science.

[20]  R. Barnhill,et al.  Properties of Shepard's surfaces , 1983 .

[21]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[22]  Robin Sibson,et al.  Computing Dirichlet Tessellations in the Plane , 1978, Comput. J..

[23]  Tracy Whelan,et al.  A representation of a C2 interpolant over triangles , 1986, Comput. Aided Geom. Des..

[24]  Robert F. Sproull,et al.  Principles of interactive computer graphics (2nd ed.) , 1979 .

[25]  Robert E. Barnhill,et al.  A multidimensional surface problem: pressure on a wing , 1985, Comput. Aided Geom. Des..

[26]  Gregory M. Nielson,et al.  A method for construction of surfaces under tension , 1984 .

[27]  Ja Gregory,et al.  Error bounds for linear interpolation on triangles , 1975 .

[28]  G. Nielson SOME PIECEWISE POLYNOMIAL ALTERNATIVES TO SPLINES UNDER TENSION , 1974 .

[29]  Robert E. Barnhill,et al.  Multistage trivariate surfaces , 1984 .

[30]  Gerald E. Farin,et al.  A modified Clough-Tocher interpolant , 1985, Comput. Aided Geom. Des..

[31]  R. E. Barnhill,et al.  Three- and four-dimensional surfaces , 1984 .

[32]  C. Lawson Software for C1 Surface Interpolation , 1977 .

[33]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[34]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[35]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[36]  Adrian Bowyer,et al.  Computing Dirichlet Tessellations , 1981, Comput. J..

[37]  John A. Gregory,et al.  Interpolation remainder theory from taylor expansions on triangles , 1975 .

[38]  A. Robin Forrest,et al.  Interactive interpolation and approximation by Bezier polynomials , 1972, Comput. J..

[39]  G. Farin Visually C2 cubic splines , 1982 .

[40]  Peter Alfeld,et al.  A discrete $C^1$ interpolant for tetrahedral data , 1984 .

[41]  Richard Franke,et al.  Thin plate splines with tension , 1985, Comput. Aided Geom. Des..

[42]  Gerald Farin,et al.  SMOOTH INTERPOLATION TO SCATTERED 3D DATA. , 1983 .

[43]  S. Stead Estimation of gradients from scattered data , 1984 .

[44]  P. Bézier Numerical control : mathematics and applications , 1972 .

[45]  Pere Brunet Increasing the smoothness of bicubic spline surfaces , 1985, Comput. Aided Geom. Des..

[46]  J. A. Gregory,et al.  A C1 triangular interpolation patch for computer-aided geometric design , 1980 .

[47]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[48]  G. Farin,et al.  Bézier polynomials over triangles and the construction of piecewise Cr polynomials , 1980 .

[49]  R. E. Barnhill,et al.  Coon's patches , 1982 .

[50]  Hans Hagen,et al.  Geometric spline curves , 1985, Comput. Aided Geom. Des..

[51]  John A. Gregory,et al.  Interpolation to boundary data on the simplex , 1985, Comput. Aided Geom. Des..

[52]  Brian A. Barsky,et al.  Geometric Continuity of Parametric Curves , 1984 .

[53]  Gary J. Herron,et al.  Smooth closed surfaces with discrete triangular interpolants , 1985, Comput. Aided Geom. Des..

[54]  R. E. Carlson,et al.  Monotone Piecewise Cubic Interpolation , 1980 .

[55]  G. Nielson Minimum Norm Interpolation in Triangles , 1980 .

[56]  W. J. Gordon,et al.  B-SPLINE CURVES AND SURFACES , 1974 .

[57]  P. Alfeld,et al.  A transfinite C 2interpolant over triangles , 1984 .

[58]  John A. Gregory,et al.  Sard kernel theorems on triangular domains with application to finite element error bounds , 1975 .

[59]  Peter Alfeld,et al.  A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..

[60]  W. J. Gordon,et al.  Smooth interpolation in triangles , 1973 .

[61]  Lois Mansfield,et al.  Interpolation to boundary data in tetrahedra with applications to compatible finite elements , 1976 .

[62]  J. Gregory,et al.  Piecewise rational quadratic interpola-tion to monotonic data , 1982 .

[63]  R. Barnhill,et al.  Polynomial interpolation to boundary data on triangles , 1975 .

[64]  Philip J. Davis,et al.  The convexity of Bernstein polynomials over triangles , 1984 .

[65]  Robert E. Barnhill,et al.  Representation and Approximation of Surfaces , 1977 .

[66]  A. Ženíšek Polynomial approximation on tetrahedrons in the finite element method , 1973 .

[67]  A. Ženíšek Interpolation polynomials on the triangle , 1970 .

[68]  Charles L. Lawson,et al.  $C^1$ surface interpolation for scattered data on a sphere , 1984 .

[69]  Geng-zhe Chang,et al.  An improved condition for the convexity of Bernstein-Bézier surfaces over triangles , 1984, Comput. Aided Geom. Des..

[70]  Wolfgang Böhm,et al.  A survey of curve and surface methods in CAGD , 1984, Comput. Aided Geom. Des..

[71]  Robert F. Sproull,et al.  Principles in interactive computer graphics , 1973 .

[72]  Gerald E. Farin,et al.  A construction for visualC1 continuity of polynomial surface patches , 1982, Comput. Graph. Image Process..

[73]  J. A. Gregory Smooth interpolation without twist constraints , 1974 .