${\cal L}_{\infty}$-Norm Computation for Continuous-Time Descriptor Systems Using Structured Matrix Pencils

In this technical note, we discuss an algorithm for the computation of the L∞-norm of transfer functions related to descriptor systems. We show how one can achieve this goal by computing the eigenvalues of certain skew-Hamiltonian/Hamiltonian matrix pencils and analyze arising problems. We also formulate and prove a theoretical result which serves as a basis for testing a transfer function matrix for properness. Finally, we illustrate our results using a descriptor system related to mechanical engineering.

[1]  Timo Reis,et al.  Lyapunov Balancing for Passivity-Preserving Model Reduction of RC Circuits , 2011, SIAM J. Appl. Dyn. Syst..

[2]  V. Mehrmann,et al.  THE MODIFIED OPTIMAL H∞ CONTROL PROBLEM FOR DESCRIPTOR SYSTEMS , 2009 .

[3]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[4]  P. Dooren,et al.  CALCULATING THE H1-NORM OF LARGE SPARSE SYSTEMS VIA CHANDRASEKHAR ITERATIONS AND EXTRAPOLATION ⁄ , 2007 .

[5]  Paul Van Dooren,et al.  Convergence of the calculation of Hoo norms and related questions , 1998 .

[6]  Kiyotsugu Takaba,et al.  On the generalized algebraic Riccati equation for continuous-time descriptor systems , 1999 .

[7]  BO K Agstr,et al.  A GENERALIZED STATE-SPACE APPROACH FOR THE ADDITIVE DECOMPOSITION OF A TRANSFER MATRIX , 1992 .

[8]  Christian H. Bischof,et al.  Algorithm 782: codes for rank-revealing QR factorizations of dense matrices , 1998, TOMS.

[9]  Tatjana Stykel,et al.  On some norms for descriptor systems , 2006, IEEE Transactions on Automatic Control.

[10]  András Varga,et al.  Computation of irreducible generalized state-space realizations , 1990, Kybernetika.

[11]  Yoshio Takane,et al.  The inverse of any two-by-two nonsingular partitioned matrix and three matrix inverse completion problems , 2009, Comput. Math. Appl..

[12]  Vasile Sima,et al.  Robust and Efficient Algorithms for L∞ -Norm Computation for Descriptor Systems , 2012, ROCOND.

[13]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..

[14]  Doktor der Naturwissenschaften Palindromic and Even Eigenvalue Problems - Analysis and Numerical Methods , 2008 .

[15]  Paul Van Dooren,et al.  A generalized state-space approach for the additive decomposition of a transfer matrix , 1992 .

[16]  Volker Mehrmann,et al.  The Modified Optimal Hinfinity Control Problem for Descriptor Systems , 2008, SIAM J. Control. Optim..

[17]  Volker Mehrmann,et al.  Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form , 2005 .

[18]  Vasile Sima EFFICIENT ALGORITHM FOR L∞-NORM CALCULATIONS , 2006 .

[19]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[20]  R. Byers,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern Numerical Computation of Deeating Subspaces of Embedded Hamiltonian Pencils Preprint-reihe Des Chemnitzer Sfb 393 , 2022 .

[21]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[22]  Michael Schmidt,et al.  Systematic Discretization of Input/Output Maps and other Contributions to the Control of Distributed Parameter Systems , 2007 .

[23]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[24]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[25]  B. Kågström,et al.  Generalized Schur methods with condition estimators for solving the generalized Sylvester equation , 1989 .

[26]  Christian H. Bischof,et al.  Computing rank-revealing QR factorizations of dense matrices , 1998, TOMS.

[27]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[28]  Hongguo Xu On equivalence of pencils from discrete-time and continuous-time control☆ , 2006 .