${\cal L}_{\infty}$-Norm Computation for Continuous-Time Descriptor Systems Using Structured Matrix Pencils
暂无分享,去创建一个
[1] Timo Reis,et al. Lyapunov Balancing for Passivity-Preserving Model Reduction of RC Circuits , 2011, SIAM J. Appl. Dyn. Syst..
[2] V. Mehrmann,et al. THE MODIFIED OPTIMAL H∞ CONTROL PROBLEM FOR DESCRIPTOR SYSTEMS , 2009 .
[3] M. Steinbuch,et al. A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .
[4] P. Dooren,et al. CALCULATING THE H1-NORM OF LARGE SPARSE SYSTEMS VIA CHANDRASEKHAR ITERATIONS AND EXTRAPOLATION ⁄ , 2007 .
[5] Paul Van Dooren,et al. Convergence of the calculation of Hoo norms and related questions , 1998 .
[6] Kiyotsugu Takaba,et al. On the generalized algebraic Riccati equation for continuous-time descriptor systems , 1999 .
[7] BO K Agstr,et al. A GENERALIZED STATE-SPACE APPROACH FOR THE ADDITIVE DECOMPOSITION OF A TRANSFER MATRIX , 1992 .
[8] Christian H. Bischof,et al. Algorithm 782: codes for rank-revealing QR factorizations of dense matrices , 1998, TOMS.
[9] Tatjana Stykel,et al. On some norms for descriptor systems , 2006, IEEE Transactions on Automatic Control.
[10] András Varga,et al. Computation of irreducible generalized state-space realizations , 1990, Kybernetika.
[11] Yoshio Takane,et al. The inverse of any two-by-two nonsingular partitioned matrix and three matrix inverse completion problems , 2009, Comput. Math. Appl..
[12] Vasile Sima,et al. Robust and Efficient Algorithms for L∞ -Norm Computation for Descriptor Systems , 2012, ROCOND.
[13] Stephen P. Boyd,et al. A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..
[14] Doktor der Naturwissenschaften. Palindromic and Even Eigenvalue Problems - Analysis and Numerical Methods , 2008 .
[15] Paul Van Dooren,et al. A generalized state-space approach for the additive decomposition of a transfer matrix , 1992 .
[16] Volker Mehrmann,et al. The Modified Optimal Hinfinity Control Problem for Descriptor Systems , 2008, SIAM J. Control. Optim..
[17] Volker Mehrmann,et al. Balanced Truncation Model Reduction for Large-Scale Systems in Descriptor Form , 2005 .
[18] Vasile Sima. EFFICIENT ALGORITHM FOR L∞-NORM CALCULATIONS , 2006 .
[19] J. Doyle,et al. Essentials of Robust Control , 1997 .
[20] R. Byers,et al. Numerische Simulation Auf Massiv Parallelen Rechnern Numerical Computation of Deeating Subspaces of Embedded Hamiltonian Pencils Preprint-reihe Des Chemnitzer Sfb 393 , 2022 .
[21] S. Boyd,et al. A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .
[22] Michael Schmidt,et al. Systematic Discretization of Input/Output Maps and other Contributions to the Control of Distributed Parameter Systems , 2007 .
[23] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[24] R. Byers. A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .
[25] B. Kågström,et al. Generalized Schur methods with condition estimators for solving the generalized Sylvester equation , 1989 .
[26] Christian H. Bischof,et al. Computing rank-revealing QR factorizations of dense matrices , 1998, TOMS.
[27] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[28] Hongguo Xu. On equivalence of pencils from discrete-time and continuous-time control☆ , 2006 .