The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission

Abstract Scheduled for launch on board the BepiColombo Mercury Planetary Orbiter (MPO) in 2014, the Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) is an innovative instrument for studying the surface composition and mineralogy of planet Mercury. MERTIS combines an uncooled grating push broom IR-spectrometer (TIS) with a radiometer (TIR), which will operate in the wavelength region of 7–14 and 7–40 μm, respectively. The spatial resolution of the MERTIS observations will be about 500 m globally and better than 500 m for approximately 5–10% of the surface. The thermal infrared range offers unique diagnostic capabilities to study the surface composition of Mercury. In particular, feldspars can easily be detected and characterized, because they show several diagnostic spectral signatures in the 7–14 μm range: the Christiansen feature, reststrahlen bands, and the transparency feature. In addition, MERTIS will allow the identification and mapping of elemental sulfur, pyroxenes, olivines, and other complex minerals. The scientific objectives of MERTIS include: (1) characterization of Mercury's surface composition, (2) identification of rock-forming minerals, (3) mapping of the surface mineralogy, and (4) study of surface temperature variations and the thermal inertia. In preparation for the MERTIS data interpretation, we are performing spectral measurements of appropriate analogue materials in the Planetary Emissivity Laboratory (PEL) and are building a spectral library (Berlin Emissivity Database (BED)) of these materials for a variety of grain sizes.

[1]  R. Velez,et al.  Radar mapping of Mercury's polar anomalies , 1994, Nature.

[2]  Paul G. Lucey,et al.  A Comparison of Mercurian Reflectance and Spectral Quantities with Those of the Moon , 1997 .

[3]  B. Fegley,et al.  A vaporization model for iron/silicate fractionation in the Mercury protoplanet , 1987 .

[4]  JOHN S. Lewis Metal/silicate fractionation in the solar system , 1972 .

[5]  S. Noble The Lunar Regolith , 2009 .

[6]  Maria T. Zuber,et al.  THE RETURN TO MERCURY: AN OVERVIEW OF MESSENGER’S FIRST MERCURY FLYBY , 2008 .

[7]  D. Mckay,et al.  The nature and origin of rims on lunar soil grains , 1997 .

[8]  J. Eraker,et al.  Electrons and Protons Accelerated in Mercury's Magnetic Field , 1974, Science.

[9]  Donald M. Hunten,et al.  Sulfur at Mercury, Elemental at the Poles and Sulfides in the Regolith , 1995 .

[10]  D. Muhleman,et al.  Mercury Radar Imaging: Evidence for Polar Ice , 1992, Science.

[11]  R. Jeanloz,et al.  Evidence for a basalt-free surface on Mercury and implications for internal heat. , 1995, Science.

[12]  Lionel Wilson,et al.  Photometric observations of Mercury from Mariner 10 , 1975 .

[13]  Alessandro Maturilli,et al.  Mercury: Mg-rich mineralogy with K-spar and garnet , 2008 .

[14]  JOHN S. Lewis Origin and composition of Mercury , 1988 .

[15]  Clark R. Chapman,et al.  Geology of the Caloris Basin, Mercury: A View from MESSENGER , 2008, Science.

[16]  Ted L. Roush,et al.  Comparison of Laboratory Emission Spectra with Mercury Telescopic Data , 1998 .

[17]  Robert C. Moore,et al.  The MESSENGER mission to Mercury: spacecraft and mission design , 2001 .

[18]  A. Sprague,et al.  Mercury: Evidence for Anorthosite and Basalt from Mid-infrared (7.3-13.5 μm) Spectroscopy , 1994 .

[19]  Matthew E. Pritchard,et al.  Thermal and Magmatic Evolution of the Moon , 2006 .

[20]  Gretchen Benedix,et al.  Spectra of extremely reduced assemblages: Implications for Mercury , 2002 .

[21]  Carle M. Pieters,et al.  Space Weathering on Mercury: Implications for Remote Sensing , 2003 .

[22]  Kim Strohbehn,et al.  The MESSENGER Gamma-Ray and Neutron Spectrometer , 2007 .

[23]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[24]  Clark R. Chapman,et al.  Remote sensing of basalts in the solar system , 1981 .

[25]  K. Keil,et al.  Recognizing mercurian meteorites , 1995 .

[26]  Thomas R. Watters,et al.  Depth of faulting on Mercury: Implications for heat flux and crustal and effective elastic thickness , 2004 .

[27]  S. Solomon,et al.  Missions to Mercury , 2007 .

[28]  Ulrich R. Christensen,et al.  A deep dynamo generating Mercury’s magnetic field , 2006, Nature.

[29]  Larry A. Lebofsky,et al.  Determination of rock type on Mercury and the Moon through remote sensing in the thermal infrared , 1988 .

[30]  G. Neugebauer,et al.  Preliminary Infrared Radiometry of the Night Side of Mercury from Mariner 10 , 1974, Science.

[31]  Fred C. Witteborn,et al.  Mercury: Thermal Modeling and Mid-infrared (5–12 μm) Observations☆ , 1998 .

[32]  Robert G. Strom,et al.  Mercury: An overview , 1997 .

[33]  Properties of the hermean regolith. II. Disk-resolved multicolor photometry and color variations of the unknown hemisphere , 2002 .

[34]  J. Mustard,et al.  Effects of Hyperfine Particles on Reflectance Spectra from 0.3 to 25 μm , 1997 .

[35]  Clark R. Chapman,et al.  Mercury Cratering Record Viewed from MESSENGER's First Flyby , 2008, Science.

[36]  Robert G. Strom,et al.  Exploring Mercury: The Iron Planet , 2003 .

[37]  Patrick Moore,et al.  The atlas of Mercury , 1977 .

[38]  Andrew F. Cheng,et al.  Mercury’s Atmosphere: A Surface-Bounded Exosphere , 2007 .

[39]  K. Goettel,et al.  The chemical equilibrium model for condensation in the solar nebula Assumptions, implications, and limitations , 1978 .

[40]  Clark R. Chapman,et al.  The Geology of Mercury: The View Prior to the MESSENGER Mission , 2007 .

[41]  V. Dehant,et al.  Mercury’s Interior Structure, Rotation, and Tides , 2007 .

[42]  Faith Vilas,et al.  Mercury: Spectral reflectance measurements (0.33–1.06 μm) 1974/1975 , 1976 .

[43]  Richard D. Starr,et al.  The X-Ray Spectrometer on the MESSENGER Spacecraft , 2007 .

[44]  T. H. Morgan,et al.  Potassium in the atmosphere of Mercury , 1986 .

[45]  Faith Vilas,et al.  Surface composition of Mercury from reflectance spectrophotometry , 1988 .

[46]  Bonnie L. Cooper,et al.  Midinfrared spectra of Mercury , 2001 .

[47]  A. L. Broadfoot,et al.  Mariner 10 - Mercury atmosphere , 1976 .

[48]  David E. Smith,et al.  The Mercury Laser Altimeter Instrument for the MESSENGER Mission , 2007 .

[49]  S. Murchie,et al.  Volcanism on Mercury: Evidence from the first MESSENGER flyby for extrusive and explosive activity and the volcanic origin of plains , 2009 .

[50]  Maxim L. Khodachenko,et al.  Processes that Promote and Deplete the Exosphere of Mercury , 2007 .

[51]  Wendell W. Mendell,et al.  The dependence of reflectance spectra of Mercury on surface terrain , 1984 .

[52]  J. Salisbury,et al.  Thermal‐infrared remote sensing and Kirchhoff's law: 1. Laboratory measurements , 1993 .

[53]  Paul G. Lucey,et al.  Lunar pure anorthosite as a spectral analog for Mercury , 2002 .

[54]  Richard V. Morris,et al.  Space Weathering in the Fine Size Fractions of Lunar Soils: Mare/Highland Differences , 2000 .

[55]  J. Warell,et al.  Properties of the hermean regolith: iii. disk-resolved vis-NIR reflectance spectra and implications for the abundance of iron* , 2003 .

[56]  Gary E. Lofgren,et al.  Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration , 1999 .

[57]  Tilman Spohn,et al.  The interior structure of Mercury: what we know, what we expect from BepiColombo , 2001 .

[58]  J. Oberst,et al.  Geologic evolution and cratering history of Mercury , 2001 .

[59]  Imaging the surface of Mercury using ground-based telescopes , 2001 .

[60]  Erick R. Malaret,et al.  The Mercury Dual Imaging System on the MESSENGER Spacecraft , 2007 .

[61]  N. Ness Mercury: Magnetic field and interior , 1978 .

[62]  Johan Warell,et al.  The 0.7–5.3 μm IR spectra of Mercury and the Moon: Evidence for high-Ca clinopyroxene on Mercury , 2006 .

[63]  George W. Wetherill,et al.  Accumulation of Mercury from planetesimals , 1988 .

[64]  Barry H. Mauk,et al.  The Energetic Particle and Plasma Spectrometer Instrument on the MESSENGER Spacecraft , 2007 .

[65]  G. Gloeckler,et al.  MESSENGER Observations of the Composition of Mercury's Ionized Exosphere and Plasma Environment , 2008, Science.

[66]  A. Potter,et al.  Impact-driven supply of sodium and potassium to the atmosphere of Mercury , 1987 .

[67]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[68]  B. Jakosky The effects of nonideal surfaces on the derived thermal properties of Mars , 1979 .

[69]  S. Weidenschilling,et al.  Iron Silicate Fractionation and the Origin of Mercury , 1978 .

[70]  R. Killen,et al.  Source rates and ion recycling rates for Na and K in Mercury's atmosphere , 2004 .

[71]  B. Langlais,et al.  The Origin of Mercury’s Internal Magnetic Field , 2007 .

[72]  Leonard J. Srnka,et al.  Magnetic dipole moment of a spherical shell with TRM acquired in a field of internal origin. [Thermoremanent Magnetization implications for lunar magnetic field] , 1976 .

[73]  W. Feldman,et al.  Observations at Venus Encounter by the Plasma Science Experiment on Mariner 10 , 1974, Science.

[74]  M. Zuber,et al.  Return to Mercury: A Global Perspective on MESSENGER's First Mercury Flyby , 2008, Science.

[75]  Graham R. Hunt,et al.  Emission spectra of particulate silicates under simulated lunar conditions , 1970 .

[76]  Willy Benz,et al.  The strange density of Mercury - Theoretical considerations , 1988 .

[77]  Alessandro Maturilli,et al.  The Planetary Emissivity Laboratory (PEL) at DLR, Berlin , 2010, 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[78]  Bruce Hapke,et al.  An analysis of the Mariner 10 color ratio map of mercury , 1987 .

[79]  Martin A. Slade,et al.  Mercury: Full-disk radar images and the detection and stability of ice at the North Pole , 1993 .

[80]  Faith Vilas,et al.  Mercury: Absence of crystalline Fe2+ in the regolith , 1985 .

[81]  S. Solomon,et al.  MESSENGER Mission Overview , 2007 .

[82]  Johan Warell,et al.  Mercury’s Surface Composition and Character as Measured by Ground-Based Observations , 2007 .

[83]  Mark S. Robinson,et al.  Ferrous oxide in Mercury's crust and mantle , 2001 .

[84]  S. Solomon,et al.  Mercury's Exosphere: Observations During MESSENGER's First Mercury Flyby , 2008, Science.

[85]  Clark R. Chapman,et al.  The MESSENGER mission to Mercury: Scientific objectives and implementation , 2001 .

[86]  Johannes Benkhoff,et al.  Mercury's polar caps and the generation of an OH exosphere , 1997 .

[87]  Dale P. Cruikshank,et al.  Mercury's feldspar connection mid-ir measurements suggest plagioclase , 1997 .

[88]  M. Belton,et al.  Mercury's Atmosphere from Mariner 10: Preliminary Results , 1974, Science.

[89]  N. Thomas,et al.  Earth-Based Visible and Near-IR Imaging of Mercury , 2007 .

[90]  A. G. W. Cameron,et al.  The partial volatilization of Mercury , 1985 .

[91]  Audouin Dollfus,et al.  Optical polarimetry of planet mercury , 1974 .

[92]  Donald H. Menzel,et al.  Multicolor photoelectric photometry of the brighter planets. III - Observations from Boyden Observatory. , 1968 .

[93]  Alberto Anselmi,et al.  BepiColombo, ESA's Mercury Cornerstone mission , 2001 .

[94]  Alessandro Maturilli,et al.  Emissivity measurements of analogue materials for the interpretation of data from PFS on Mars Express and MERTIS on Bepi-Colombo , 2006 .

[95]  Jean-Michel Reess,et al.  VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission , 1996, Optics & Photonics.

[96]  Sean C. Solomon,et al.  Mercury: the enigmatic innermost planet , 2003 .

[97]  S. Solomon,et al.  MESSENGER and the Chemistry of Mercury’s Surface , 2007 .

[98]  Paul D. Spudis,et al.  Stratigraphy and geologic history of Mercury , 1988 .

[99]  E. Scott,et al.  Nature and Origins of Meteoritic Breccias , 2006 .

[100]  S. Murchie,et al.  Spectroscopic Observations of Mercury's Surface Reflectance During MESSENGER's First Mercury Flyby , 2008, Science.

[101]  Martin A. Slade,et al.  Shape and Orientation of Mercury from Radar Ranging Data , 1995 .

[102]  James E. Conel,et al.  Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of Spectral emission from condensed particulate mediums , 1969 .

[103]  B. Jakosky,et al.  Near‐surface thermal gradients and their effects on mid‐infrared emission spectra of planetary surfaces , 1994 .

[104]  B. Anderson,et al.  The Magnetometer Instrument on MESSENGER , 2007 .

[105]  James A. Slavin,et al.  The Structure of Mercury's Magnetic Field from MESSENGER's First Flyby , 2008, Science.

[106]  Robert W. Farquhar,et al.  MESSENGER Mission Design and Navigation , 2007 .

[107]  Richard F. Conde,et al.  The MESSENGER Spacecraft , 2007 .

[108]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[109]  Raymond E. Arvidson,et al.  Global thermal inertia and surface properties of Mars from the MGS mapping mission , 2005 .

[110]  S. E. Hawkins,et al.  Reflectance and Color Variations on Mercury: Regolith Processes and Compositional Heterogeneity , 2008, Science.

[111]  M. Slade,et al.  Radar Mapping of Mercury: Full-Disk Images and Polar Anomalies , 1992, Science.

[112]  G. Schubert,et al.  Sulfur in Mercury's Core? , 2001 .

[113]  Richard D. Starr,et al.  The MESSENGER mission to Mercury: scientific payload , 2001 .

[114]  N. Ness,et al.  The magnetic field of Mercury, 1 , 1975 .

[115]  H. T. Howard,et al.  Mercury: Results on Mass, Radius, Ionosphere, and Atmosphere from Mariner 10 Dual-Frequency Radio Signals , 1974, Science.

[116]  N. Ness,et al.  Magnetic Field Observations near Mercury: Preliminary Results from Mariner 10 , 1974, Science.

[117]  B. Jolliff,et al.  New views of the Moon , 2006 .

[118]  Nathalie A. Cabrol,et al.  Aqueous processes at Gusev crater inferred from physical properties of rocks and soils along the Spirit traverse , 2006 .

[119]  F. Lura,et al.  The DLR small satellite mission BIRD , 2000 .

[120]  Roger N. Clark,et al.  The Mercury soil: Presence of Fe2+ , 1979 .

[121]  Johannes Benkhoff,et al.  BepiColombo: Payload and mission updates , 2006 .

[122]  U. Christensen,et al.  Convection-driven planetary dynamos , 2006, Proceedings of the International Astronomical Union.

[123]  T. McCord,et al.  Mercury: Surface Composition from the Reflection Spectrum , 1972, Science.

[124]  A. Stephenson,et al.  Crustal remanence and the magnetic moment of Mercury , 1976 .

[125]  J. Harmon Radar Imaging of Mercury , 2007 .

[126]  Carle M. Pieters,et al.  Optical effects of space weathering: The role of the finest fraction , 1993 .

[127]  L. Starukhina,et al.  Water detection on atmosphereless celestial bodies: Alternative explanations of the observations , 2001 .

[128]  C. Wagner Thermal emission spectroscopy of laboratory regoliths , 2000 .

[129]  Bruce Hapke,et al.  Space weathering from Mercury to the asteroid belt , 2001 .

[130]  N. Thomas,et al.  The Surface of Mercury as Seen by Mariner 10 , 2007 .

[131]  Don E. Wilhelms,et al.  Mercurian volcanism questioned , 1976 .

[132]  A. Balogh,et al.  Returns to Mercury: science and mission objectives , 2001 .

[133]  D. Mckay,et al.  Aqueous Alteration of the Grosnaja CV3 Carbonaceous Chondrite , 1993 .

[134]  J. Salisbury,et al.  Midinfrared spectral features of rocks and their powders , 2002 .

[135]  M. Malin,et al.  The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission , 2004 .

[136]  P. Spudis,et al.  Composition of orientale basin deposits and implications for the lunar basin‐forming process , 1984 .

[137]  Andrew F. Cheng,et al.  The Geophysics of Mercury: Current Status and Anticipated Insights from the MESSENGER Mission , 2007 .

[138]  Richard V. Morris,et al.  The optical properties of the finest fraction of lunar soil: Implications for space weathering , 2001 .

[139]  David E. Smith,et al.  Laser Altimeter Observations from MESSENGER's First Mercury Flyby , 2008, Science.

[140]  Lionel Wilson,et al.  Identification of mercurian volcanism: Resolution effects and implications for MESSENGER , 2002 .

[141]  Mark R. Lankton,et al.  The Mercury Atmospheric and Surface Composition Spectrometer for the MESSENGER Mission , 2007 .

[142]  Richard D. Starr,et al.  Mercury's Magnetosphere After MESSENGER's First Flyby , 2008, Science.

[143]  J W Morgan,et al.  Chemical composition of Earth, Venus, and Mercury. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[144]  V. Formisano,et al.  Comparison of surface temperatures measured by the Planetary Fourier Spectrometer (PFS) on Mars Express with predictions from the Berlin Mars near Surface Thermal model (BMST) for the BEAGLE 2 landing site in Isidis Planitia , 2006 .

[145]  Johan Warell,et al.  Properties of the Hermean regolith: V. New optical reflectance spectra, comparison with lunar anorthosites, and mineralogical modelling , 2004 .

[146]  Johan Warell,et al.  A set of laboratory analogue materials for the MERTIS instrument on the ESA BepiColombo mission to Mercury , 2006 .

[147]  E. Kührt,et al.  Theoretical interpretation of infrared measurements at Deimos in the framework of crater radiation , 1990 .

[148]  M E Davies,et al.  Mercury's Surface: Preliminary Description and Interpretation from Mariner 10 Pictures , 1974, Science.

[149]  Paul G. Lucey,et al.  Recalibrated Mariner 10 Color Mosaics: Implications for Mercurian Volcanism , 1997, Science.

[150]  Raymond E. Arvidson,et al.  Comparative studies of lunar, Martian, and Mercurian craters and plains , 1977 .

[151]  Boris A. Ivanov,et al.  Cratering History and Lunar Chronology , 2006 .

[152]  Bradley G. Henderson,et al.  Near‐surface thermal gradients and mid‐IR emission spectra: A new model including scattering and application to real data , 1995 .

[153]  John S. Lewis,et al.  Chemistry of the Planets , 1973 .

[154]  Tilman Spohn,et al.  Thermal history of Mars and the sulfur content of its core , 1990 .

[155]  David E. Smith,et al.  The Radio Frequency Subsystem and Radio Science on the MESSENGER Mission , 2007 .

[156]  P. Christensen,et al.  Quantitative thermal emission spectroscopy of minerals: A laboratory technique for measurement and calibration , 1997 .

[157]  Richard V. Morris,et al.  Space weathering on airless bodies: Resolving a mystery with lunar samples , 2000 .

[158]  W. Benz,et al.  The Origin of Mercury , 2007 .

[159]  Mark J. Cintala,et al.  Impact‐induced thermal effects in the lunar and Mercurian regoliths , 1992 .

[160]  V. I. Moroz Infrared Spectrum of Mercury (λ=1.0-3.9μ) , 1965 .

[161]  Doris Breuer,et al.  Interior Evolution of Mercury , 2007 .

[162]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[163]  Alessandro Maturilli,et al.  The emissivity of a fine-grained labradorite sample at typical Mercury dayside temperatures , 2009 .

[164]  A. Vasavada,et al.  The Thermal Stability of Water Ice at the Poles of Mercury , 1992, Science.

[165]  David K. Lynch,et al.  Mercury: Mid‐infrared (3–13.5 μm) observations show heterogeneous composition, presence of intermediate and basic soil types, and pyroxene , 2002 .

[166]  Alessandro Maturilli,et al.  PFS for Mars Express: A new approach to study Martian atmosphere , 2002 .

[167]  Donald E. Gault,et al.  Surface History of Mercury: Implications for Terrestrial Planets , 1975 .

[168]  Marija Strojnik Scholl,et al.  Push-broom reconnaissance camera with time expansion for a (Martian) landing-site certification , 1997 .

[169]  Robert G. Strom,et al.  Additional evidence of Mercurian volcanism , 1976 .

[170]  Willy Benz,et al.  Collisional stripping of Mercury's mantle , 1988 .