Transient plane source measurements of the thermal properties of hydrating cement pastes

A transient plane source measurement technique is applied to assessing the heat capacity and thermal conductivity of hydrating cement pastes in their fresh state and during the course of 28 d of hydration at 20°C. Variables investigated include water-to-cement mass ratio (w/c – 0.3 or 0.4) and curing conditions (sealed or saturated curing). The heat capacity data for the fresh cement pastes are compared to a simple law of mixtures, and analytical expressions are developed to estimate the heat capacity as a function of degree of hydration for the two curing conditions. The measured thermal conductivities of the fresh pastes along with the known thermal conductivity of water are used to estimate the thermal conductivity of the original cement powder via application of the Hashin-Shtrikman (H-S) bounds. Hydration is seen to have only a minor influence on the measured thermal conductivity. Extension of the law of mixtures for heat capacity and the H-S bounds for thermal conductivity to predicting the corresponding properties of concretes are discussed. RésuméUne technique basée sur une source de chaleur pulsée est utilisée pour déterminer la capacité calorifique et la conductivité thermique de pâtes de ciment à l’état frais et pendant les 28 premiers jours d’hydratation à 20°C. Les variables étudiées sont le rapport eau-ciment en masse (e/c 0.3 ou 0.4) et les conditions de cure (éprouvettes scellées ou dans l’eau). Les mesures de capacité calorifique des pâtes de ciment fraîches sont comparées avec la simple loi des mélanges. Des expressions analytiques ont été développées pour estimer la capacité calorifique en fonction du degré d’hydratation pour les deux conditions de cure. La conductivité thermique de la poudre de ciment utilisée est estimée à l’aide des valeurs de conductivité thermique mesurées et de la conductivité thermique de l’eau par la méthode des limites Hashin-Shtrikman. Le degré d’hydratation semble avoir une influence mineure sur la valeur de la conductivité thermique mesurée. L’utilisation de l’extension de la loi des mélanges pour la capacité calorifique et des limites H-S pour la conductivité thermique afin de prédire les propriétés correspondantes du béton est discutée.

[1]  J. Plawsky,et al.  Thermal Effects during the Curing of Concrete Pavements , 1997 .

[2]  Jeffrey J. Thomas,et al.  The surface area of cement paste as measured by neutron scattering: Evidence for two C-S-H morphologies , 1998 .

[3]  Dale P Bentz A COMPUTER MODEL TO PREDICT THE SURFACE TEMPERATURE AND TIME-OF-WETNESS TEMPERATURE OF CONCRETE PAVEMENTS AND BRIDGE DECKS. , 2000 .

[4]  D.D.L. Chung,et al.  Effect of sand addition on the specific heat and thermal conductivity of cement , 2000 .

[5]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[6]  K. Horai,et al.  Thermal conductivity of rock‐forming minerals , 1971 .

[7]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[8]  D. Bentz,et al.  Curing, Hydration, and Microstructure of Cement Paste , 2006 .

[9]  S. Gustafsson Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials , 1991 .

[10]  S. Todd Low-temperature Heat Capacities and Entropies at 298.16°K. of Crystalline Calcium Orthosilicate, Zinc Orthosilicate and Tricalcium Silicate , 1951 .

[11]  D. Bentz Three-Dimensional Computer Simulation of Portland Cement Hydration and Microstructure Development , 1997 .

[12]  H. Vosteen,et al.  Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock , 2003 .

[13]  Ramazan Demirboga,et al.  The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete , 2003 .

[14]  B F McCullough,et al.  FAST TRACK PAVING: CONCRETE TEMPERATURE CONTROL AND TRAFFIC OPENING CRITERIA FOR BONDED CONCRETE OVERLAYS. VOLUME II: HIPERPAV USER'S MANUAL , 1999 .

[15]  Kenneth A. Snyder,et al.  Suspended hydration and loss of freezable water in cement pastes exposed to 90% relative humidity , 2004 .

[16]  L. Molina On predicting the influence of curing conditions on the degree of hydration , 1992 .

[17]  Ramazan Demirboga,et al.  Influence of mineral admixtures on thermal conductivity and compressive strength of mortar , 2003 .

[18]  Jin-keun Kim,et al.  An experimental study on thermal conductivity of concrete , 2003 .

[19]  Y. Ballim,et al.  DETERMINATION OF THE THERMAL CONDUCTIVITY OF CONCRETE DURING THE EARLY STAGES OF HYDRATION , 1998 .

[20]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[21]  Dale P. Bentz,et al.  Modelling cement microstructure: Pixels, particles, and property prediction , 1999 .

[22]  Denis Mitchell,et al.  THERMAL PROPERTIES AND TRANSIENT THERMAL ANALYSIS OF STRUCTURAL MEMBERS DURING HYDRATION , 1998 .

[23]  Yi He,et al.  Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations , 2005 .

[24]  A. Khelidj,et al.  Experimental study and modelling approaches for the thermal conductivity evolution of hydrating cement paste , 2004 .

[25]  Luc Taerwe,et al.  Specific heat and thermal diffusivity of hardening concrete , 1995 .

[26]  Torgrim Log,et al.  Transient plane source (TPS) technique for measuring thermal transport properties of building materials , 1995 .

[27]  Michèle Queneudec,et al.  The measurement of the thermal conductivity of solid aggregates using the transient plane source technique , 1997 .