Hydrodynamic screening of star polymers in shear flow

Abstract.The mutual effects of the conformations of a star polymer in simple shear flow and the deformation of the solvent flow field are investigated by a hybrid mesoscale simulation technique. We characterize the flow field near the star polymer as a function of its functionality (arm number) f . A strong screening of the imposed flow is found inside the star polymer, which increases with increasing f . To elucidate the importance of hydrodynamic screening, we compare results for hydrodynamic and random solvents. The dependence of the polymer orientation angle on the Weissenberg number shows a power law behavior with super-universal exponent --independent of hydrodynamic and excluded-volume interactions. In contrast, the polymer rotation frequency changes qualitatively when hydrodynamic interactions are switched on.

[1]  T Ihle,et al.  Stochastic rotation dynamics. I. Formalism, Galilean invariance, and Green-Kubo relations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  G. Grest,et al.  Star Polymers: Experiment, Theory, and Simulation , 2007 .

[3]  Philip LeDuc,et al.  Dynamics of individual flexible polymers in a shear flow , 1999, Nature.

[4]  Scott T. Milner,et al.  Relaxation of self-entangled many-arm star polymers , 1989 .

[5]  Raymond Kapral,et al.  Mesoscopic description of solvent effects on polymer dynamics. , 2006, The Journal of chemical physics.

[6]  J. M. Yeomans,et al.  Dynamics of short polymer chains in solution , 2000 .

[7]  R. Winkler,et al.  Star polymers in shear flow. , 2006, Physical review letters.

[8]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[9]  J. T. Padding,et al.  Stick boundary conditions and rotational velocity auto-correlation functions for colloidal particles in a coarse-grained representation of the solvent , 2005 .

[10]  A. Malevanets,et al.  Solute molecular dynamics in a mesoscale solvent , 2000 .

[11]  Yiftah Navot,et al.  Elastic membranes in viscous shear flow , 1998 .

[12]  S. Hess,et al.  Rotation and deformation of a finitely extendable flexible polymer molecule in a steady shear flow , 2002 .

[13]  Hu Yang,et al.  Penicillin V-conjugated PEG-PAMAM star polymers , 2003, Journal of biomaterials science. Polymer edition.

[14]  T Ihle,et al.  Dynamic correlations in stochastic rotation dynamics. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Douglas E. Smith,et al.  Single-polymer dynamics in steady shear flow. , 1999, Science.

[16]  J. F. Ryder,et al.  Transport coefficients of a mesoscopic fluid dynamics model , 2003, cond-mat/0302451.

[17]  G Gompper,et al.  Dynamic regimes of fluids simulated by multiparticle-collision dynamics. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Victor Steinberg,et al.  Statistics of tumbling of a single polymer molecule in shear flow. , 2005, Physical review letters.

[20]  Jeffrey F. Morris,et al.  Stationary shear flow around fixed and free bodies at finite Reynolds number , 2004, Journal of Fluid Mechanics.

[21]  Rodrigo E. Teixeira,et al.  Characteristic periodic motion of polymers in shear flow. , 2005, Physical review letters.

[22]  Gerhard Gompper,et al.  Low-Reynolds-number hydrodynamics of complex fluids by multi-particle-collision dynamics , 2004 .

[23]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[24]  T. Ihle,et al.  Erratum: Multi-particle collision dynamics: Flow around a circular and a square cylinder , 2001, cond-mat/0110148.

[25]  Jan K. G. Dhont,et al.  An introduction to dynamics of colloids , 1996 .

[26]  R. Winkler Semiflexible polymers in shear flow. , 2006, Physical review letters.

[27]  R. Winkler,et al.  Dynamics of polymers in a particle-based mesoscopic solvent. , 2005, The Journal of chemical physics.