Zeros of univariate interval polynomials

Polynomials with perturbed coefficients, which can be regarded as interval polynomials, are very common in the area of scientific computing due to floating point operations in a computer environment. In this paper, the zeros of interval polynomials are investigated. We show that, for a degree n interval polynomial, the number of interval zeros is at most n and the number of complex block zeros is exactly n if multiplicities are counted. The boundaries of complex block zeros on a complex plane are analyzed. Numeric algorithms to bound interval zeros and complex block zeros are presented.