Enhanced Heat Transfer Catalyst Structures for Fischer-Tropsch Synthesis

[1]  S. T. Sie PROCESS DEVELOPMENT AND SCALE UP: IV. CASE HISTORY OF THE DEVELOPMENT OF A FISCHER-TROPSCH SYNTHESIS PROCESS , 1998 .

[2]  M. Dry Catalytic aspects of industrial Fischer-Tropsch synthesis , 1982 .

[3]  E. Lemmon,et al.  Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air , 2004 .

[4]  Alexis T. Bell,et al.  Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts , 1986 .

[5]  C. H. Bartholomew,et al.  Reaction and deactivation kinetics for Fischer–Tropsch synthesis on unpromoted and potassium-promoted iron catalysts , 1999 .

[6]  Anthony G. Dixon,et al.  Computational fluid dynamics studies of fixed bed heat transfer , 1998 .

[7]  C. H. Bartholomew Mechanisms of catalyst deactivation , 2001 .

[8]  A. Slavin,et al.  A new model for the effective thermal conductivity of packed beds of solid spheroids : alumina in helium between 100 and 500°C , 2000 .

[9]  Dawid Jakobus Duvenhage,et al.  Synthol reactor technology development , 2002 .

[10]  C. Satterfield,et al.  Product distributions of the Fischer-Tropsch synthesis on precipitated iron catalysts , 1989 .

[11]  D. Mears,et al.  Diagnostic criteria for heat transport limitations in fixed bed reactors , 1971 .

[12]  M. Yamada,et al.  Investigations on the structural changes of two Co/SiO2 catalysts by performing Fischer–Tropsch synthesis , 2003 .

[13]  M. Ertan Taskin,et al.  3D CFD simulations of steam reforming with resolved intraparticle reaction and gradients , 2007 .

[14]  Yong Lu,et al.  A microreactor based on sinter-locked microfibrous media with open porous structure for nitration of benzene , 2007 .

[15]  Wenhua H. Zhu,et al.  Nickel–zinc accordion-fold batteries with microfibrous electrodes using a papermaking process , 2002 .

[16]  N. Saxena,et al.  Effective thermal conductivity of copper powders , 1989 .

[17]  Kaoru Fujimoto,et al.  Characterization of mass transfer in supercritical-phase Fischer-Tropsch synthesis reaction , 1995 .

[18]  M. Nijemeisland,et al.  CFD Simulation of Reaction and Heat Transfer Near the Wall of a Fixed Bed , 2003 .

[19]  F. Taghipour,et al.  Modeling of annular reactors with surface reaction using computational fluid dynamics (CFD) , 2010 .

[20]  Alexis T. Bell,et al.  Estimates of rate coefficients for elementary processes occurring during Fischer-Tropsch synthesis over RuTiO2 , 1994 .

[21]  R. K. Duggirala,et al.  Computational Fluid Dynamics Simulation Of Chemically Reacting Gas Flows Through Microfibrous Materials , 2008 .

[22]  S. Reyes,et al.  Transport-enhanced α-olefin readsorption pathways in Ru-catalyzed hydrocarbon synthesis , 1991 .

[23]  F. Recasens,et al.  CFD study on particle-to-fluid heat transfer in fixed bed reactors: Convective heat transfer at low and high pressure , 2006 .

[24]  H. Storch The Fischer-Tropsch and Related Processes for Synthesis of Hydrocarbons by Hydrogenation of Carbon Monoxide* , 1948 .

[25]  Yong Lu,et al.  Microfibrous entrapped ZnO-CaO/Al2O3 for high efficiency hydrogen production via methanol steam reforming , 2010 .

[26]  Yulong Ding,et al.  Heat transfer of gas flow through a packed bed , 2006 .

[27]  Yaşar Demirel,et al.  On the effective heat transfer parameters in a packed bed , 2000 .

[28]  Anthony G. Dixon,et al.  Catalyst design by CFD for heat transfer and reaction in steam reforming , 2004 .

[29]  A. Fortini,et al.  Prediction of thermal conductivity and electrical resistivity of porous metallic materials , 1973 .

[30]  G. Groppi,et al.  Mass-Transfer Characterization of Metallic Foams as Supports for Structured Catalysts , 2005 .

[31]  Eduard Egusquiza,et al.  Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds , 2005 .

[32]  A Strategy for Scaling Up the Fischer–Tropsch Bubble Column Slurry Reactor , 2003 .

[33]  Qiuwan Wang,et al.  Computational study of forced convective heat transfer in structured packed beds with spherical or ellipsoidal particles , 2010 .

[34]  Gerhart Eigenberger,et al.  Gas flow and heat transfer through catalyst filled tubes , 2001 .

[35]  Anthony G. Dixon,et al.  CFD study of fluid flow and wall heat transfer in a fixed bed of spheres , 2004 .

[36]  Christopher B. Roberts,et al.  Selective Fischer–Tropsch synthesis over an Al2O3 supported cobalt catalyst in supercritical hexane , 2003 .

[37]  Ajay K. Dalai,et al.  Review on Fischer–Tropsch synthesis in supercritical media , 2009 .

[38]  Gilbert F. Froment,et al.  Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 1. Experimental procedure and results , 1993 .

[39]  Anthony G. Dixon,et al.  DETERMINATION OF THE FIXED BED WALL HEAT TRANSFER COEFFICIENT USING COMPUTATIONAL FLUID DYNAMICS , 1996 .

[40]  H.P.A. Calis,et al.  CFD modelling and experimental validation of pressure drop and flow profile in a novel structured catalytic reactor packing , 2001 .

[41]  M. Dry,et al.  Practical and theoretical aspects of the catalytic Fischer-Tropsch process , 1996 .

[42]  Anthony G. Dixon,et al.  Comparison of CFD simulations to experiment for convective heat transfer in a gas-solid fixed bed , 2001 .

[43]  R. B. Anderson,et al.  Composition of Synthetic Liquid Fuels. I. Product Distribution and Analysis of C5—C8 Paraffin Isomers from Cobalt Catalyst1 , 1950 .

[44]  R. Powell Correlation of metallic thermal and electrical conductivities for both solid and liquid phases , 1965 .

[45]  H. Kölbel,et al.  The Fischer-Tropsch Synthesis in the Liquid Phase , 1980 .

[46]  M. E. Dry,et al.  Update of the Sasol Synfuels Process , 1987 .

[47]  Doraiswami Ramkrishna,et al.  Operating strategies for Fischer-Tropsch reactors: A model-directed study , 2004 .

[48]  Anthony G. Dixon,et al.  An improved equation for the overall heat transfer coefficient in packed beds , 1996 .

[49]  R. Zennaro,et al.  An experimental investigation of Fischer–Tropsch synthesis over washcoated metallic structured supports , 2009 .

[50]  Stan T. Kolaczkowski,et al.  APPLICATION OF A CFD CODE (FLUENT) TO FORMULATE MODELS OF CATALYTIC GAS PHASE REACTIONS IN POROUS CATALYST PELLETS , 2007 .

[51]  Achim Karl-Erich Heibel,et al.  Heat transfer in conductive monolith structures , 2005 .

[52]  Anthony G. Dixon,et al.  Computational fluid dynamics simulations of fluid flow and heat transfer at the wall-particle contact points in a fixed-bed reactor , 1999 .

[53]  Ulrich Kunz,et al.  Reactors for Fischer‐Tropsch Synthesis , 2008 .

[54]  Hans Schulz,et al.  Short history and present trends of Fischer–Tropsch synthesis , 1999 .

[55]  D. Cahela,et al.  Microfibrous entrapped small particle adsorbents for high efficiency heterogeneous contacting , 2008 .

[56]  M. Nijemeisland,et al.  Wall-to-particle heat transfer in steam reformer tubes : CFD comparison of catalyst particles , 2008 .

[57]  Rajamani Krishna,et al.  Fundamentals and selection of advanced Fischer-Tropsch reactors , 1999 .

[58]  M. Yovanovich,et al.  Effective thermal conductivity of rough spherical packed beds , 2006 .

[59]  Onrawee Laguerre,et al.  Heat transfer between wall and packed bed crossed by low velocity airflow , 2006 .

[60]  J. Anderson,et al.  Computational fluid dynamics : the basics with applications , 1995 .

[61]  K. Jun,et al.  Effect of CO2 in the feed stream on the deactivation of Co/γ-Al2O3 Fischer–Tropsch catalyst , 2008 .

[62]  Thermal resistance models of packed‐bed effective heat transfer parameters , 1985 .

[63]  D. Cahela,et al.  A study of kinetic effects due to using microfibrous entrapped zinc oxide sorbents for hydrogen sulfide removal , 2008 .

[64]  A. Dixon,et al.  The influence of the tube and particle diameters at constant ratio on heat transfer in packed beds , 1998 .

[65]  Achim Karl-Erich Heibel,et al.  Monolithic catalysts with ‘high conductivity’ honeycomb supports for gas/solid exothermic reactions: characterization of the heat-transfer properties , 2004 .

[66]  C. Bennett,et al.  Kinetics of the Fischer-Tropsch Reaction over Iron , 1979 .

[67]  J. M. Smith,et al.  Effective Thermal Conductivities in Gas-Solid Systems , 1949 .

[68]  Toyohiko Yano,et al.  Fabrication of short-fiber-reinforced SiC composites by polycarbosilane infiltration , 2004 .

[69]  V. Anikeev,et al.  Thermodynamic Calculations in the Modeling of Multiphase Processes and Reactors , 2000 .

[70]  D. Cahela,et al.  Novel catalyst structures with enhanced heat transfer characteristics , 2011 .

[71]  Åke Björck,et al.  Numerical methods for least square problems , 1996 .

[72]  B. Jager,et al.  Low temperature Fischer–Tropsch synthesis from a Sasol perspective , 1999 .

[73]  Hans Schulz,et al.  Polymerisation kinetics of the Fischer-Tropsch CO hydrogenation using iron and cobalt based catalysts , 1999 .

[74]  K. R. Westerterp,et al.  Influence of tube and particle diameter on heat transport in packed beds , 1992 .

[75]  H. S. Fogler,et al.  Elements of Chemical Reaction Engineering , 1986 .

[76]  S. Ihm,et al.  Effect of Carbon Deposits on Carbon Monoxide Hydrogenation over Alumina-Supported Cobalt Catalyst , 1988 .

[77]  Freek Kapteijn,et al.  Catalyst deactivation: is it predictable?: What to do? , 2001 .

[78]  Rajamani Krishna,et al.  Design and scale-up of the Fischer–Tropsch bubble column slurry reactor , 2000 .

[79]  F. Kapteijn,et al.  Using monolithic catalysts for highly selective Fischer–Tropsch synthesis , 2003 .