Bayesian sensor image fusion using local linear generative models

We present a probabilistic method for fusion of images pro- duced by multiple sensors. The approach is based on an image forma- tion model in which the sensor images are noisy, locally linear functions of an underlying true scene (latent variable). A Bayesian framework then provides for maximum-likelihood or maximum a posteriori estimates of the true scene from the sensor images. Least-squares estimates of the parameters of the image formation model involve (local) second-order image statistics, and are related to local principal-component analysis. We demonstrate the efficacy of the method on images from visible-band and infrared sensors. © 2001 Society of Photo-Optical Instrumentation Engineers. (DOI: 10.1117/1.1384886)

[1]  Peter J. Burt,et al.  Enhanced image capture through fusion , 1993, 1993 (4th) International Conference on Computer Vision.

[2]  Lawrence A. Klein,et al.  Sensor and Data Fusion Concepts and Applications , 1993 .

[3]  Michael I. Jordan,et al.  Mixtures of Probabilistic Principal Component Analyzers , 2001 .

[4]  Ravi K. Sharma,et al.  Registration of video sequences from multiple sensors , 1997 .

[5]  Hui Henry Li,et al.  Automatic visual/IR image registration , 1996 .

[6]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[7]  Alexander Basilevsky,et al.  Statistical Factor Analysis and Related Methods , 1994 .

[8]  K. Jöreskog Some contributions to maximum likelihood factor analysis , 1967 .

[9]  Ravi K. Sharma,et al.  Adaptive and statistical image fusion , 1996 .

[10]  K. Jöreskog Factor analysis by least squares and maximum likelihood methods , 1977 .

[11]  Albert J. Ahumada,et al.  Sensor fusion for synthetic vision , 1991 .

[12]  T. Leen,et al.  Probabilistic model-based multisensor image fusion , 1999 .

[13]  Roderick P. McDonald,et al.  Factor Analysis and Related Methods , 1985 .

[14]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[15]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[16]  Ravi K. Sharma,et al.  Model-based sensor fusion for aviation , 1997, Defense, Security, and Sensing.

[17]  Duane P. Pond,et al.  Infrared-optical multisensor for autonomous landing guidance , 1995, Defense, Security, and Sensing.

[18]  H. Harman Modern factor analysis , 1961 .