Supersolvus Hot Workability and Dynamic Recrystallization in Wrought Co–Al–W-Base Alloys

[1]  J. Cormier,et al.  Influence of strain rate on subsolvus dynamic and post-dynamic recrystallization kinetics of Inconel 718 , 2019, Acta Materialia.

[2]  A. Ruban,et al.  Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni , 2018, Physical Review B.

[3]  A. Mottura,et al.  First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys , 2018 .

[4]  S. Neumeier,et al.  High temperature properties and fatigue strength of novel wrought γ/γ′ Co-base superalloys , 2017 .

[5]  E. Holmström,et al.  A first principles study of the stacking fault energies for fcc Co-based binary alloys , 2017 .

[6]  A. Mottura,et al.  First‐principles calculations of thermodynamic properties and planar fault energies in Co3X and Ni3X L12 compounds , 2017 .

[7]  A. Momeni The physical interpretation of the activation energy for hot deformation of Ni and Ni–30Cu alloys , 2016 .

[8]  R. Drautz,et al.  Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo , 2016 .

[9]  S. Neumeier,et al.  Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance , 2015 .

[10]  T. Pollock,et al.  L12-Strengthened Cobalt-Base Superalloys , 2015 .

[11]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[12]  E. Mcdevitt Feasibility of Cast and Wrought Co-Al-W-X Gamma-Prime Superalloys , 2014 .

[13]  Takanori Matsui Dynamic Recrystallization Behavior of Waspaloy during Hot Working , 2014 .

[14]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[15]  J. Favre Recrystallization of L‐605 Cobalt Superalloy during Hot‐Working Process , 2012 .

[16]  S. Shang,et al.  Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[17]  M. Chandran,et al.  First-principle calculation of stacking fault energies in Ni and Ni-Co alloy , 2011 .

[18]  I. Tanaka,et al.  Phonon-phonon interactions in transition metals , 2011, 1103.0137.

[19]  Tresa M. Pollock,et al.  New Co-based γ-γ′ high-temperature alloys , 2010 .

[20]  D. Caillard,et al.  Glide of dislocations in non-octahedral planes of fcc metals: a review , 2009 .

[21]  D. Weaver,et al.  Recrystallization and grain-growth behavior of a nickel-base superalloy during multi-hit deformation , 2007 .

[22]  Jürgen Hafner,et al.  Materials simulations using VASP - a quantum perspective to materials science , 2007, Comput. Phys. Commun..

[23]  K. Ishida,et al.  Cobalt-Base High-Temperature Alloys , 2006, Science.

[24]  R. L. Goetz,et al.  Particle stimulated nucleation during dynamic recrystallization using a cellular automata model , 2005 .

[25]  S. Semiatin,et al.  Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material , 2004 .

[26]  F. Montheillet,et al.  An experimental study of the recrystallization mechanism during hot deformation of aluminium , 2000 .

[27]  V. Seetharaman,et al.  Modeling dynamic recrystallization using cellular automata , 1998 .

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[30]  J. Jonas,et al.  A mechanical interpretation of the activation energy of high temperature deformation in two phase materials , 1996 .

[31]  Rajiv Shivpuri,et al.  Modeling microstructural development during the forging of Waspaloy , 1995 .

[32]  F. J. Humphreys,et al.  Recrystallization and Related Annealing Phenomena , 1995 .

[33]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[34]  John J. Jonas,et al.  Prediction of steel flow stresses at high temperatures and strain rates , 1991 .

[35]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[36]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[37]  W. V. Haeringen,et al.  Stacking-fault energies in semiconductors from first-principles calculations , 1987 .

[38]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[39]  Hsun Hu,et al.  TEXTURE OF METALS , 1974 .

[40]  P. Gallagher The influence of alloying, temperature, and related effects on the stacking fault energy , 1970, Metallurgical and Materials Transactions B.

[41]  T. Ericsson The temperature and concentration dependence of the stacking fault energy in the Co-Ni system , 1966 .

[42]  R. P. Agarwala,et al.  DIFFUSION IN COBALT-NICKEL ALLOYS , 1962 .

[43]  T. Pollock,et al.  Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys , 2015 .

[44]  E. Mcdevitt Vacuum induction melting and vacuum arc remelting of Co-Al-W-X gamma-prime superalloys , 2014 .

[45]  J. Jonas,et al.  The Influence of Non-Octahedral Slip on Texture Development in FCC Metals , 1988 .