Burrow emergence rhythms of deep-water Mediterranean Norway lobsters (Nephrops norvegicus) revealed by acoustic telemetry

[1]  G. Rotllant,et al.  ROV-based monitoring of passive ecological recovery in a deep-sea no-take fishery reserve. , 2023, The Science of the total environment.

[2]  J. Aguzzi,et al.  Established and Emerging Research Trends in Norway Lobster, Nephrops norvegicus , 2023, Biology.

[3]  M. Carreras,et al.  Advancing fishery-independent stock assessments for the Norway lobster (Nephrops norvegicus) with new monitoring technologies , 2022, Frontiers in Marine Science.

[4]  A. Belardinelli,et al.  Accounting for environmental and fishery management factors when standardizing CPUE data from a scientific survey: A case study for Nephrops norvegicus in the Pomo Pits area (Central Adriatic Sea) , 2022, PloS one.

[5]  V. Sbragaglia,et al.  Long-Term Monitoring of Diel and Seasonal Rhythm of Dentex dentex at an Artificial Reef , 2022, Frontiers in Marine Science.

[6]  V. Lam,et al.  Impact of Ocean Warming, Overfishing and Mercury on European Fisheries: A Risk Assessment and Policy Solution Framework , 2022, Frontiers in Marine Science.

[7]  J. Aguzzi,et al.  Megafaunal assemblages in deep-sea ecosystems of the Gulf of Cadiz, northeast Atlantic ocean , 2022, Deep Sea Research Part I: Oceanographic Research Papers.

[8]  J. Aguzzi,et al.  Foraging strategies in four deep-sea benthic species , 2021 .

[9]  M. Heupel,et al.  Global trends in aquatic animal tracking with acoustic telemetry. , 2021, Trends in ecology & evolution.

[10]  J. Kruschke Bayesian Analysis Reporting Guidelines , 2021, Nature Human Behaviour.

[11]  L. Buttay,et al.  Demographic responses to protection from harvesting in a long-lived marine species , 2021 .

[12]  Carlos J. Melián,et al.  Mapping and Evaluating Marine Protected Areas and Ecosystem Services: A Transdisciplinary Delphi Forecasting Process Framework , 2021, Frontiers in Ecology and Evolution.

[13]  J. Aguzzi,et al.  Burrow emergence rhythms of Nephrops norvegicus by UWTV and surveying biases , 2021, Scientific Reports.

[14]  J. del Rio,et al.  Mobile robotic platforms for the acoustic tracking of deep-sea demersal fishery resources , 2020, Science Robotics.

[15]  J. Aguzzi,et al.  The potential of video imagery from worldwide cabled observatory networks to provide information supporting fish-stock and biodiversity assessment , 2020, ICES Journal of Marine Science.

[16]  J. Aguzzi,et al.  Multiparametric monitoring of fish activity rhythms in an Atlantic coastal cabled observatory , 2020 .

[17]  Roberto Danovaro,et al.  The Hierarchic Treatment of Marine Ecological Information from Spatial Networks of Benthic Platforms , 2020, Sensors.

[18]  Roberto Danovaro,et al.  New High-Tech Flexible Networks for the Monitoring of Deep-Sea Ecosystems. , 2019, Environmental science & technology.

[19]  V. Sbragaglia,et al.  Long-term Video Tracking of Cohoused Aquatic Animals: A Case Study of the Daily Locomotor Activity of the Norway Lobster (Nephrops norvegicus). , 2019, Journal of visualized experiments : JoVE.

[20]  Simone Marini,et al.  Annual rhythms of temporal niche partitioning in the Sparidae family are correlated to different environmental variables , 2019, Scientific Reports.

[21]  A. Gori,et al.  Reproduction, energy storage and metabolic requirements in a mesophotic population of the gorgonian Paramuricea macrospina , 2018, PloS one.

[22]  J. Aguzzi,et al.  Faunal activity rhythms influencing early community succession of an implanted whale carcass offshore Sagami Bay, Japan , 2018, Scientific Reports.

[23]  V. Sbragaglia,et al.  Fighting over burrows: the emergence of dominance hierarchies in the Norway lobster (Nephrops norvegicus) , 2017, Journal of Experimental Biology.

[24]  S. McGrayne The Theory That Would Not Die , 2017 .

[25]  J. Gili,et al.  Composition and temporal variability of particle fluxes in an insular canyon of the northwestern Mediterranean Sea , 2017 .

[26]  Yukun Lin,et al.  A Multi‐Autonomous Underwater Vehicle System for Autonomous Tracking of Marine Life , 2017, J. Field Robotics.

[27]  Autun Purser,et al.  Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV) , 2017, PloS one.

[28]  C. Fox,et al.  Physiological Condition, Short-Term Survival, and Predator Avoidance Behavior of Discarded Norway Lobsters (Nephrops norvegicus) , 2016, Journal of Shellfish Research.

[29]  V. Sbragaglia,et al.  First laboratory insight on the behavioral rhythms of the bathyal crab Geryon longipes , 2016 .

[30]  Brendan J. Godley,et al.  Camera technology for monitoring marine biodiversity and human impact , 2016 .

[31]  Jacopo Aguzzi,et al.  Effect of simulated tidal currents on the burrow emergence rhythms of the Norway lobster (Nephrops norvegicus) , 2015 .

[32]  Bruce Hartill,et al.  Scampi (Metanephrops challengeri) emergence patterns and catchability , 2015 .

[33]  Christopher C Wilmers,et al.  The golden age of bio-logging: how animal-borne sensors are advancing the frontiers of ecology. , 2015, Ecology.

[34]  J. Kocik,et al.  Aquatic animal telemetry: A panoramic window into the underwater world , 2015, Science.

[35]  Antoni Mànuel,et al.  An automated multi-flume actograph for the study of behavioral rhythms of burrowing organisms , 2013 .

[36]  A. Jamieson,et al.  Shifting feeding behaviour of deep-sea buccinid gastropods at natural and simulated food falls , 2012 .

[37]  J. Aguzzi,et al.  A review of burrow counting as an alternative to other typical methods of assessment of Norway lobster populations , 2012, Reviews in Fish Biology and Fisheries.

[38]  Paolo Menesatti,et al.  Multi-parametric study of behavioural modulation in demersal decapods at the VENUS cabled observatory in Saanich Inlet, British Columbia, Canada , 2011 .

[39]  Paolo Menesatti,et al.  Behavioral rhythms of hydrocarbon seep fauna in relation to internal tides , 2010 .

[40]  Jacopo Aguzzi,et al.  Light Intensity Determines Temporal Niche Switching of Behavioral Activity in Deep-Water Nephrops norvegicus (Crustacea: Decapoda) , 2010, Journal of biological rhythms.

[41]  J. Aguzzi,et al.  The influence of light availability and predatory behavior of the decapod crustacean Nephrops norvegicus on the activity rhythms of continental margin prey decapods , 2009 .

[42]  J. Aguzzi,et al.  Hydrodynamic, non-photic modulation of biorhythms in the Norway lobster, Nephrops norvegicus (L.) , 2009 .

[43]  Jacopo Aguzzi,et al.  A history of recent advancements on Nephrops norvegicus behavioral and physiological rhythms , 2008, Reviews in Fish Biology and Fisheries.

[44]  M. Bell,et al.  Trawl catch composition in relation to Norway lobster (Nephrops norvegicus L.) abundance on the Farn Deeps grounds, NE England , 2008 .

[45]  Tony O’Hagan Bayes factors , 2006 .

[46]  R. Briggs,et al.  Estimation of the size of onset of sexual maturity in Nephrops norvegicus (L.) , 2006 .

[47]  Jacopo Aguzzi,et al.  Spontaneous internal desynchronization of locomotor activity and body temperature rhythms from plasma melatonin rhythm in rats exposed to constant dim light , 2006, Journal of circadian rhythms.

[48]  J. Aguzzi,et al.  Seasonal dynamics in Nephrops norvegicus (Decapoda: Nephropidae) catches off the Catalan coasts (Western Mediterranean) , 2004 .

[49]  J. Company,et al.  Feeding activity rhythm of Nephrops norvegicus of the western Mediterranean shelf and slope grounds , 2004 .

[50]  Jacopo Aguzzi,et al.  Diel and seasonal patterns of Nephrops norvegicus (Decapoda: Nephropidae) catchability in the western Mediterranean , 2003 .

[51]  A. Shanks,et al.  Survival and growth of the Norway lobster Nephrops norvegicus in relation to light-induced eye damage , 2000 .

[52]  Thomas Ruf,et al.  The Lomb-Scargle Periodogram in Biological Rhythm Research: Analysis of Incomplete and Unequally Spaced Time-Series , 1999 .

[53]  S H Strogatz,et al.  Coupled oscillators and biological synchronization. , 1993, Scientific American.

[54]  Douglas M. Neil,et al.  The reactions of the Norway lobster, Nephrops norvegicus (L.), to water currents , 1988 .

[55]  E. Gaten,et al.  Light and retinal damage in Nephrops norvegicus (L.) (Crustacea) , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[56]  E. Naylor,et al.  An endogenous activity rhythm and the rhythmicity of catches of Nephrops norvegicus (L). , 1976 .

[57]  J. Dickey,et al.  Bayes factors for independence in contingency tables , 1974 .

[58]  G. Rotllant,et al.  Spatial ecology of Norway lobster Nephrops norvegicus in Mediterranean deep-water environments: implications for designing no-take marine reserves , 2021, Marine Ecology Progress Series.

[59]  V. Sbragaglia,et al.  Rhythmic behaviour of marine benthopelagic species and the synchronous dynamics of benthic communities , 2015 .

[60]  Paolo Menesatti,et al.  Activity rhythms in the deep-sea: a chronobiological approach. , 2011, Frontiers in bioscience.

[61]  Aguzzi,et al.  The activity rhythm of berried and unberried females of Nephrops norvegicus (decapoda, nephropidae) , 2007 .

[62]  H. Aréchigá,et al.  Neurohumoral basis of circadian rhythmicity in Nephrops norvegicus (L) , 1980 .