Akt and mTOR pathways differentially regulate the development of natural and inducible TH17 cells

[1]  J. Woodgett,et al.  Inactivation of the enzyme GSK3α by the kinase IKKi promotes AKT-mTOR signaling pathway that mediates interleukin-1-induced Th17 cell maintenance. , 2012, Immunity.

[2]  A. Hirao,et al.  PI3K-Akt-mTORC1-S6K1/2 axis controls Th17 differentiation by regulating Gfi1 expression and nuclear translocation of RORγ. , 2021, Cell reports.

[3]  Keunwook Lee,et al.  Vital roles of mTOR complex 2 in Notch-driven thymocyte differentiation and leukemia , 2012, The Journal of experimental medicine.

[4]  M. Horton,et al.  Regulation of immune responses by mTOR. , 2012, Annual review of immunology.

[5]  G. Koretzky,et al.  The requirements for natural Th17 cell development are distinct from those of conventional Th17 cells , 2011, The Journal of experimental medicine.

[6]  Mark S. Sundrud,et al.  Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells , 2011, The Journal of experimental medicine.

[7]  R. Kaul,et al.  Identification of an innate T helper type 17 response to intestinal bacterial pathogens , 2011, Nature Medicine.

[8]  P. Worley,et al.  The mammalian Target of Rapamycin (mTOR) regulates T helper cell differentiation through the selective activation of mTORC1 and mTORC2 signaling , 2011, Nature Immunology.

[9]  R. Schmid,et al.  RelA and RelB transcription factors in distinct thymocyte populations control lymphotoxin-dependent interleukin-17 production in γδ T cells. , 2011, Immunity.

[10]  L. Harrington,et al.  Glycogen Synthase Kinase-3 Is an Early Determinant in the Differentiation of Pathogenic Th17 Cells , 2011, The Journal of Immunology.

[11]  K. E. van der Vos,et al.  The extending network of FOXO transcriptional target genes. , 2011, Antioxidants & redox signaling.

[12]  D. Schatz,et al.  Sin1-mTORC2 suppresses rag and il7r gene expression through Akt2 in B cells. , 2010, Molecular cell.

[13]  Qicheng Ma,et al.  Activation of a metabolic gene regulatory network downstream of mTOR complex 1. , 2010, Molecular cell.

[14]  R. DePinho,et al.  Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells , 2010, Nature Immunology.

[15]  C. Spencer,et al.  Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. , 2010, Immunity.

[16]  N. Hay,et al.  Akt isoforms differentially regulate neutrophil functions. , 2010, Blood.

[17]  R. DePinho,et al.  Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells , 2010, The Journal of experimental medicine.

[18]  G. Shulman,et al.  Akt2 is required for hepatic lipid accumulation in models of insulin resistance. , 2009, Cell metabolism.

[19]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[20]  D. Sabatini,et al.  mTOR signaling at a glance , 2009, Journal of Cell Science.

[21]  T. McGraw,et al.  The Akt kinases: Isoform specificity in metabolism and cancer , 2009, Cell cycle.

[22]  R. Flavell,et al.  Thymic self-reactivity selects natural interleukin 17-producing T cells that can regulate peripheral inflammation , 2009, Nature Immunology.

[23]  P. Worley,et al.  The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. , 2009, Immunity.

[24]  T. McGraw,et al.  Insulin-modulated Akt subcellular localization determines Akt isoform-specific signaling , 2009, Proceedings of the National Academy of Sciences.

[25]  Thomas Korn,et al.  IL-17 and Th17 Cells. , 2009, Annual review of immunology.

[26]  L. Cosmi,et al.  Human interleukin 17–producing cells originate from a CD161+CD4+ T cell precursor , 2008, The Journal of experimental medicine.

[27]  K. Shokat,et al.  T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR , 2008, Proceedings of the National Academy of Sciences.

[28]  J. Buer,et al.  The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins , 2008, Nature.

[29]  C. Benoist,et al.  The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells , 2008, The Journal of experimental medicine.

[30]  T. Ludwig,et al.  Unequal Contribution of Akt Isoforms in the Double-Negative to Double-Positive Thymocyte Transition1 , 2007, The Journal of Immunology.

[31]  B. Hemmings,et al.  Physiological roles of PKB/Akt isoforms in development and disease. , 2007, Biochemical Society transactions.

[32]  D. Guertin,et al.  Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. , 2006, Developmental cell.

[33]  M. Birnbaum,et al.  Opposing Roles for Akt1 and Akt2 in Rac/Pak Signaling and Cell Migration* , 2006, Journal of Biological Chemistry.

[34]  J. Qin,et al.  SIN1/MIP1 Maintains rictor-mTOR Complex Integrity and Regulates Akt Phosphorylation and Substrate Specificity , 2006, Cell.

[35]  D. Alessi,et al.  Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis , 2005, The EMBO journal.

[36]  M. Birnbaum,et al.  Isoform-specific Regulation of Insulin-dependent Glucose Uptake by Akt/Protein Kinase B* , 2003, Journal of Biological Chemistry.

[37]  R. Bruick,et al.  Oxygen sensing in the hypoxic response pathway: regulation of the hypoxia-inducible transcription factor. , 2003, Genes & development.

[38]  C. Thompson,et al.  Activated Akt promotes increased resting T cell size, CD28‐independent T cell growth, and development of autoimmunity and lymphoma , 2003, European journal of immunology.

[39]  A. Weiss,et al.  The PI‐3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3 , 2003, Immunological reviews.

[40]  Brian A. Hemmings,et al.  Protein Kinase SGK Mediates Survival Signals by Phosphorylating the Forkhead Transcription Factor FKHRL1 (FOXO3a) , 2001, Molecular and Cellular Biology.

[41]  J. M. Arbeit,et al.  Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. , 2000, Cancer research.

[42]  F. Gonzalez,et al.  Conditional disruption of the aryl hydrocarbon receptor nuclear translocator (Arnt) gene leads to loss of target gene induction by the aryl hydrocarbon receptor and hypoxia-inducible factor 1alpha. , 2000, Molecular endocrinology.

[43]  P. Cohen,et al.  Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. , 1998, The Biochemical journal.

[44]  M. Birnbaum,et al.  Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[45]  R. Johnson,et al.  Acute postnatal ablation of Hif-2alpha results in anemia. , 2007, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. Wahli,et al.  Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. , 2005, Molecular and cellular biology.

[47]  K. Kaestner,et al.  Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB beta). , 2001, Science.