Gaussian Process for Functional Data Analysis: The GPFDA Package for R
暂无分享,去创建一个
[1] Prabhat,et al. Parallelizing Gaussian Process Calculations in R , 2013, ArXiv.
[2] Jianqing Fan,et al. Statistical Estimation in Varying-Coefficient Models , 1999 .
[3] R. Gramacy,et al. Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models , 2010 .
[4] Ciprian M. Crainiceanu,et al. refund: Regression with Functional Data , 2013 .
[5] Andrew O. Finley,et al. spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models , 2013, 1310.8192.
[6] Modeling Function-Valued Processes with Nonseparable and/or Nonstationary Covariance Structure. , 2020, 1903.09981.
[7] D. Higdon. Space and Space-Time Modeling using Process Convolutions , 2002 .
[8] Robert E Weiss,et al. Bayesian methods for data analysis. , 2010, American journal of ophthalmology.
[9] A. O'Hagan,et al. Curve Fitting and Optimal Design for Prediction , 1978 .
[10] Fabian Scheipl,et al. A general framework for functional regression modelling , 2017 .
[11] D. M. Titterington,et al. Neural Networks: A Review from a Statistical Perspective , 1994 .
[12] T. Choi,et al. Gaussian Process Regression Analysis for Functional Data , 2011 .
[13] S. Dabo‐Niang,et al. Statistical modeling of spatial big data: An approach from a functional data analysis perspective , 2018 .
[14] B. Wang,et al. Curve prediction and clustering with mixtures of Gaussian process functional regression models , 2008, Stat. Comput..
[15] S. Greven,et al. Boosting Functional Regression Models with FDboost , 2017, Journal of Statistical Software.
[16] J. Friedman,et al. Projection Pursuit Regression , 1981 .
[17] Yves Deville,et al. DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .
[18] Manuel Febrero-Bande,et al. Statistical Computing in Functional Data Analysis: The R Package fda.usc , 2012 .
[19] Ker-Chau Li,et al. Sliced Inverse Regression for Dimension Reduction , 1991 .
[20] Marcus R. Frean,et al. Dependent Gaussian Processes , 2004, NIPS.
[21] Robert B. Gramacy,et al. laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian Processes in R , 2016 .
[22] Edzer Pebesma,et al. Spatio-Temporal Interpolation using gstat , 2016, R J..
[23] Stanley R. Johnson,et al. Varying Coefficient Models , 1984 .
[24] J Q Shi,et al. Gaussian Process Functional Regression Modeling for Batch Data , 2007, Biometrics.
[25] Karin S. Dorman,et al. mlegp: statistical analysis for computer models of biological systems using R , 2008, Bioinform..
[26] Martin Schlather,et al. Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields , 2015 .
[27] J. Friedman,et al. Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .
[28] Roderick Murray-Smith,et al. Hierarchical Gaussian process mixtures for regression , 2005, Stat. Comput..
[29] Bo Wang,et al. Generalized Gaussian Process Regression Model for Non-Gaussian Functional Data , 2014, 1401.8189.
[30] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[31] Christina Gloeckner,et al. Modern Applied Statistics With S , 2003 .
[32] Jorge Mateu,et al. Statistics for spatial functional data: some recent contributions , 2009 .
[33] Hans-Georg Müller,et al. Functional Data Analysis , 2016 .
[34] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[35] Catherine A. Calder,et al. Local likelihood estimation for covariance functions with spatially-varying parameters: the convoSPAT package for R , 2015, 1507.08613.