Gaussian Process for Functional Data Analysis: The GPFDA Package for R

We present and describe the GPFDA package for R. The package provides flexible functionalities for dealing with Gaussian process regression (GPR) models for functional data. Multivariate functional data, functional data with multidimensional inputs, and nonseparable and/or nonstationary covariance structures can be modeled. In addition, the package fits functional regression models where the mean function depends on scalar and/or functional covariates and the covariance structure is modeled by a GPR model. In this paper, we present the versatility of GPFDA with respect to mean function and covariance function specifications and illustrate the implementation of estimation and prediction of some models through reproducible numerical examples.

[1]  Prabhat,et al.  Parallelizing Gaussian Process Calculations in R , 2013, ArXiv.

[2]  Jianqing Fan,et al.  Statistical Estimation in Varying-Coefficient Models , 1999 .

[3]  R. Gramacy,et al.  Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models , 2010 .

[4]  Ciprian M. Crainiceanu,et al.  refund: Regression with Functional Data , 2013 .

[5]  Andrew O. Finley,et al.  spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models , 2013, 1310.8192.

[6]  Modeling Function-Valued Processes with Nonseparable and/or Nonstationary Covariance Structure. , 2020, 1903.09981.

[7]  D. Higdon Space and Space-Time Modeling using Process Convolutions , 2002 .

[8]  Robert E Weiss,et al.  Bayesian methods for data analysis. , 2010, American journal of ophthalmology.

[9]  A. O'Hagan,et al.  Curve Fitting and Optimal Design for Prediction , 1978 .

[10]  Fabian Scheipl,et al.  A general framework for functional regression modelling , 2017 .

[11]  D. M. Titterington,et al.  Neural Networks: A Review from a Statistical Perspective , 1994 .

[12]  T. Choi,et al.  Gaussian Process Regression Analysis for Functional Data , 2011 .

[13]  S. Dabo‐Niang,et al.  Statistical modeling of spatial big data: An approach from a functional data analysis perspective , 2018 .

[14]  B. Wang,et al.  Curve prediction and clustering with mixtures of Gaussian process functional regression models , 2008, Stat. Comput..

[15]  S. Greven,et al.  Boosting Functional Regression Models with FDboost , 2017, Journal of Statistical Software.

[16]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[17]  Yves Deville,et al.  DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization , 2012 .

[18]  Manuel Febrero-Bande,et al.  Statistical Computing in Functional Data Analysis: The R Package fda.usc , 2012 .

[19]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[20]  Marcus R. Frean,et al.  Dependent Gaussian Processes , 2004, NIPS.

[21]  Robert B. Gramacy,et al.  laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian Processes in R , 2016 .

[22]  Edzer Pebesma,et al.  Spatio-Temporal Interpolation using gstat , 2016, R J..

[23]  Stanley R. Johnson,et al.  Varying Coefficient Models , 1984 .

[24]  J Q Shi,et al.  Gaussian Process Functional Regression Modeling for Batch Data , 2007, Biometrics.

[25]  Karin S. Dorman,et al.  mlegp: statistical analysis for computer models of biological systems using R , 2008, Bioinform..

[26]  Martin Schlather,et al.  Analysis, Simulation and Prediction of Multivariate Random Fields with Package RandomFields , 2015 .

[27]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[28]  Roderick Murray-Smith,et al.  Hierarchical Gaussian process mixtures for regression , 2005, Stat. Comput..

[29]  Bo Wang,et al.  Generalized Gaussian Process Regression Model for Non-Gaussian Functional Data , 2014, 1401.8189.

[30]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[31]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[32]  Jorge Mateu,et al.  Statistics for spatial functional data: some recent contributions , 2009 .

[33]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[34]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[35]  Catherine A. Calder,et al.  Local likelihood estimation for covariance functions with spatially-varying parameters: the convoSPAT package for R , 2015, 1507.08613.