Novel Model-Based Method for Identification of Scattering Mechanisms in Polarimetric SAR Data

One basic issue of importance in polarimetric synthetic aperture radar (SAR) imagery is the identification and separation of target scattering mechanisms. Physical scattering behaviors can be characterized by polarimetric parameters from the second-order statistical observables. The average copolarization phase difference, amplitude ratio, and target coherence are important fundamental parameters for identifying scattering mechanisms. However, the individual usages of these parameters could not describe both the scattering mechanisms and the depolarization. In this paper, a new approach is proposed for scattering characterization by exploring the information contained in these three parameters. First, by assuming reflection symmetry, a new parameter is proposed for the first time to measure the scattering randomness. Then, in combination with the scattering ratio (defined by the ratio of T22 + T33 to T11), a classification plane is proposed to classify target scattering mechanisms. A validation test for this new approach is performed with three RADARSAT-2 polarimetric data sets acquired over two study areas: the San Francisco Bay area and Fuzhou, China. Results show that the new approach is very promising for distinguishing orientated targets (with respect to the radar azimuth direction) in urban areas from natural scatterers such as forests, and it also shows that the new method is robust for analyzing multitemporal polarimetric SAR data.

[1]  Shane Cloude,et al.  A new parameter for soil moisture estimation , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[2]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[3]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Oleg Antropov,et al.  Volume Scattering Modeling in PolSAR Decompositions: Study of ALOS PALSAR Data Over Boreal Forest , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[5]  J.S. Lee,et al.  Polarimetric SAR speckle filtering and its impact on classification , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[6]  E. Pottier,et al.  Polarimetric Radar Imaging: From Basics to Applications , 2009 .

[7]  Sang-Eun Park,et al.  Unsupervised Classification of Scattering Mechanisms in Polarimetric SAR Data Using Fuzzy Logic in Entropy and Alpha Plane , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[9]  Jong-Sen Lee,et al.  Unsupervised classification using polarimetric decomposition and complex Wishart classifier , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[10]  Anthony Freeman,et al.  Fitting a Two-Component Scattering Model to Polarimetric SAR Data From Forests , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[11]  R. Touzi,et al.  Polarimetric SAR urban classification using the Touzi target scattering decomposition , 2011 .

[12]  Yisok Oh,et al.  Phase-difference of urban area in polarimetric SAR images , 2012 .

[13]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[15]  Jian Yang,et al.  The Extended Bragg Scattering Model-Based Method for Ship and Oil-Spill Observation Using Compact Polarimetric SAR , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[16]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[17]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  S. Cloude Polarisation: Applications in Remote Sensing , 2009 .

[19]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[20]  Yasser Maghsoudi,et al.  Improving the Accuracy of Urban Land Cover Classification Using Radarsat-2 PolSAR Data , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[21]  I. Hajnsek,et al.  A tutorial on synthetic aperture radar , 2013, IEEE Geoscience and Remote Sensing Magazine.

[22]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[23]  Y. Yamaguchi,et al.  CS-1-4 Four-Component Scattering Model for Polarimetric SAR Image Decomposition based on Covariance Matrix(CS-1. 電磁波計測・イメージングと波動情報処理技術, エレクトロニクス1) , 2005 .

[24]  Jian Yang,et al.  New method for symmetric target scattering characterization in polarimetric SAR images , 2013, Conference Proceedings of 2013 Asia-Pacific Conference on Synthetic Aperture Radar (APSAR).

[25]  Jaan Praks,et al.  Land Cover and Soil Type Mapping From Spaceborne PolSAR Data at L-Band With Probabilistic Neural Network , 2014, IEEE Transactions on Geoscience and Remote Sensing.