SOFC composite cathodes based on LSM and co-doped cerias (Ce0.8Gd0.1X0.1O2–δ, X = Gd, Cr, Mg, Bi, Ce)

[1]  J. M. Serra,et al.  Structural–Transport Properties Relationships on Ce1–xLnxO2−δ System (Ln = Gd, La, Tb, Pr, Eu, Er, Yb, Nd) and Effect of Cobalt Addition , 2012 .

[2]  J. M. Serra,et al.  Study of the Transport Properties of the Mixed Ionic Electronic Conductor Ce1−xTbxO2−δ + Co (x = 0.1, 0.2) and Evaluation As Oxygen-Transport Membrane , 2011 .

[3]  J. M. Serra,et al.  Improvement of the Electrochemical Performance of Ln0.58Sr0.4Fe0.8Co0.2O3 – δ IT‐SOFC Cathodes by Ternary Lanthanide Combinations (La‐Pr‐Sm) , 2010 .

[4]  A. Hagen,et al.  Defect Chemistry and Thermomechanical Properties of Ce0.8Pr x Tb0.2 − x O2 − δ , 2010 .

[5]  J. M. Serra,et al.  Optimization of oxygen activation fuel-cell electrocatalysts by combinatorial designs. , 2009, ChemSusChem.

[6]  J. M. Serra,et al.  Influence of Barium Incorporation on the Electrochemical Performance of Ln0.58Sr0.4Fe0.8Co0.2O3–δ (Ln=La, Pr, Sm) Perovskites for Oxygen Activation at Intermediate Temperatures , 2009 .

[7]  Amit Kumar,et al.  Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[8]  K. Murata,et al.  LSM‐YSZ Cathode with Infiltrated Cobalt Oxide and Cerium Oxide Nanoparticles , 2009 .

[9]  D. P. Fagg,et al.  Transport Properties of Fluorite-Type Ce0.8Pr0.2O2−δ: Optimization via the Use of Cobalt Oxide Sintering Aid , 2009 .

[10]  J. M. Han,et al.  Microstructure and electrical properties of nano-sized Ce1-xGdxO2 (0 ≤ x ≤ 0.2) particles prepared by spray pyrolysis , 2008 .

[11]  Tal Z. Sholklapper,et al.  Nanostructured Solid Oxide Fuel Cell Electrodes , 2007 .

[12]  E. Wachsman,et al.  The role of point defects in the physical properties of nonstoichiometric ceria , 2007 .

[13]  D. P. Fagg,et al.  Oxygen permeability, thermal expansion and mixed conductivity of GdxCe0.8-xPr0.2O2-δ, x = 0, 0.15, 0.2 , 2006 .

[14]  J. Abrantes,et al.  Effects of firing conditions and addition of Co on bulk and grain boundary properties of CGO , 2005 .

[15]  S. Jiang,et al.  Novel structured mixed ionic and electronic conducting cathodes of solid oxide fuel cells , 2005 .

[16]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[17]  Doris Sebold,et al.  Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs , 2005 .

[18]  Jürgen Fleig,et al.  The grain boundary impedance of random microstructures: numerical simulations and implications for the analysis of experimental data , 2002 .

[19]  Haitao Huang,et al.  Ionic conductivity in the CeO2–Gd2O3 system (0.05≤Gd/Ce≤0.4) prepared by oxalate coprecipitation , 2002 .

[20]  Pavan K. Shukla,et al.  Extension of the measurement model approach for deconvolution of underlying distributions for impedance measurements , 2002 .

[21]  F. Tietz,et al.  Impedance studies on chromite-titanate porous electrodes under reducing conditions , 2001 .

[22]  E. P. Murray,et al.  (La,Sr)MnO3–(Ce,Gd)O2−x composite cathodes for solid oxide fuel cells , 2001 .

[23]  Mogens Bjerg Mogensen,et al.  Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes , 2001 .

[24]  A. Kovalevsky,et al.  Ceria-based materials for solid oxide fuel cells , 2001 .

[25]  Brian C. H. Steele,et al.  Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C , 2000 .

[26]  M. Mogensen,et al.  ac Impedance study of the oxygen reduction mechanism on La1−xSrxMnO3 in solid oxide fuel cells , 1993 .

[27]  W. Kenan,et al.  Impedance Spectroscopy: Emphasizing Solid Materials and Systems , 1987 .

[28]  Detlef Stolten,et al.  Hydrogen and Fuel Cells Fundamentals, Technologies and Applications , 2010 .

[29]  Nigel P. Brandon,et al.  Fuel cells compendium , 2005 .

[30]  K. Kendall,et al.  High temperature solid oxide fuel cells : fundamentals, design and applicatons , 2003 .

[31]  Frank Tietz,et al.  Thermal expansion of SOFC materials , 1999 .