Advanced Crystallographic Data Collection Protocols for Experimental Phasing.

Experimental phasing by single- or multi-wavelength anomalous dispersion (SAD or MAD) has become the most popular method of de novo macromolecular structure determination. Continuous advances at third-generation synchrotron sources have enabled the deployment of rapid data collection protocols that are capable of recording SAD or MAD data sets. However, procedural simplifications driven by the pursuit of high throughput have led to a loss of sophistication in data collection strategies, adversely affecting measurement accuracy from the viewpoint of anomalous phasing. In this chapter, we detail optimized strategies for collecting high-quality data for experimental phasing, with particular emphasis on minimizing errors from radiation damage as well as from the instrument. This chapter also emphasizes data processing for "on-the-fly" decision-making during data collection, a critical process when data quality depends directly on information gathered while at the synchrotron.

[1]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[2]  Wayne A. Hendrickson,et al.  Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur , 1981, Nature.

[3]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[4]  Zbigniew Dauter,et al.  Carrying out an optimal experiment , 2010, Acta Crystallographica Section D: Biological Crystallography.

[5]  Randy J. Read,et al.  Electronic Reprint Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard Biological Crystallography Decision-making in Structure Solution Using Bayesian Estimates of Map Quality: the Phenix Autosol Wizard , 2022 .

[6]  Zbigniew Dauter,et al.  New approaches to high-throughput phasing. , 2002, Current opinion in structural biology.

[7]  P. Dumas,et al.  A crystallographic study of the binding of 13 metal ions to two related RNA duplexes. , 2003, Nucleic acids research.

[8]  W. Weis,et al.  Structure of the calcium-dependent lectin domain from a rat mannose-binding protein determined by MAD phasing. , 1991, Science.

[9]  Ana González,et al.  Optimizing data collection for structure determination. , 2003, Acta crystallographica. Section D, Biological crystallography.

[10]  R. Ravelli,et al.  The use of a mini-κ goniometer head in macromolecular crystallography diffraction experiments , 2013, Acta crystallographica. Section D, Biological crystallography.

[11]  Z. Dauter,et al.  Phosphates in the Z-DNA dodecamer are flexible, but their P-SAD signal is sufficient for structure solution. , 2014, Acta crystallographica. Section D, Biological crystallography.

[12]  N. Duke,et al.  Is your cold-stream working for you or against you? An in-depth look at temperature and sample motion , 2008 .

[13]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[14]  Eric Blanc,et al.  Automated structure solution with autoSHARP. , 2007, Methods in molecular biology.

[15]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[16]  Clemens Vonrhein,et al.  Data processing and analysis with the autoPROC toolbox , 2011, Acta crystallographica. Section D, Biological crystallography.

[17]  Wayne A Hendrickson,et al.  [28] Phase determination from multiwavelength anomalous diffraction measurements. , 1997, Methods in enzymology.

[18]  Z Dauter,et al.  Anomalous signal of phosphorus used for phasing DNA oligomer: importance of data redundancy. , 2001, Acta crystallographica. Section D, Biological crystallography.

[19]  Sean McSweeney,et al.  Zero-dose extrapolation as part of macromolecular synchrotron data reduction. , 2003, Acta crystallographica. Section D, Biological crystallography.

[20]  J. L. Smith,et al.  Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[21]  M A Walsh,et al.  Taking MAD to the extreme: ultrafast protein structure determination. , 1999, Acta crystallographica. Section D, Biological crystallography.

[22]  W. Hendrickson Evolution of diffraction methods for solving crystal structures. , 2013, Acta crystallographica. Section A, Foundations of crystallography.

[23]  Andrew G. W. Leslie,et al.  Processing diffraction data with mosflm , 2007 .

[24]  J. McCutcheon,et al.  Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: purification, crystallization and structure determination. , 2001, Journal of molecular biology.

[25]  Julia Brasch,et al.  Structures from Anomalous Diffraction of Native Biological Macromolecules , 2012, Science.

[26]  J. Pedelacq,et al.  Two-wavelength MAD phasing: in search of the optimal choice of wavelengths. , 1999, Acta crystallographica. Section D, Biological crystallography.

[27]  James M. Holton,et al.  A beginner’s guide to radiation damage , 2009, Journal of synchrotron radiation.

[28]  T. Earnest,et al.  Single-wavelength anomalous diffraction phasing revisited. , 2000, Acta crystallographica. Section D, Biological crystallography.

[29]  Richard Henderson,et al.  Cryo-protection of protein crystals against radiation damage in electron and X-ray diffraction , 1990, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[30]  Wayne A. Hendrickson,et al.  Anomalous diffraction in crystallographic phase evaluation , 2014, Quarterly Reviews of Biophysics.

[31]  J. Risler,et al.  Crystal structure study of Opsanus tau parvalbumin by multiwavelength anomalous diffraction , 1985, FEBS letters.

[32]  H Toyokawa,et al.  The PILATUS 1M detector. , 2006, Journal of synchrotron radiation.

[33]  Graeme Winter,et al.  Decision making in xia2 , 2013, Acta crystallographica. Section D, Biological crystallography.

[34]  S. Doublié [29] Preparation of selenomethionyl proteins for phase determination. , 1997, Methods in enzymology.

[35]  Kay Diederichs Quantifying instrument errors in macromolecular X-ray data sets. , 2010, Acta crystallographica. Section D, Biological crystallography.

[36]  Gwyndaf Evans,et al.  CHOOCH: a program for deriving anomalous-scattering factors from X-ray fluorescence spectra , 2001 .

[37]  Meitian Wang,et al.  Optimal fine ϕ-slicing for single-photon-counting pixel detectors , 2011, Acta crystallographica. Section D, Biological crystallography.

[38]  Wayne A. Hendrickson,et al.  Robust structural analysis of native biological macromolecules from multi-crystal anomalous diffraction data , 2013, Acta crystallographica. Section D, Biological crystallography.

[39]  Elspeth F. Garman,et al.  RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography , 2013 .

[40]  Pavol Skubák,et al.  Automatic protein structure solution from weak X-ray data , 2013, Nature Communications.

[41]  W. Hendrickson,et al.  Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. , 2011, Acta crystallographica. Section D, Biological crystallography.

[42]  C. Schulze-Briese,et al.  PRIGo: a new multi-axis goniometer for macromolecular crystallography , 2015, Journal of synchrotron radiation.

[43]  Ezequiel Panepucci,et al.  Fast native-SAD phasing for routine macromolecular structure determination , 2014, Nature Methods.

[44]  W. Hendrickson,et al.  Multi-crystal native SAD analysis at 6 keV. , 2014, Acta crystallographica. Section D, Biological crystallography.

[45]  F. Rey,et al.  Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography , 2010, Nature.

[46]  J. Kieft,et al.  A general strategy to solve the phase problem in RNA crystallography. , 2007, Structure.