On a reverse form of the Brascamp-Lieb inequality
暂无分享,去创建一个
[1] L. Leindler. On a Certain Converse of Hölder’s Inequality , 1972 .
[2] A. Prékopa. On logarithmic concave measures and functions , 1973 .
[3] W. Beckner. Inequalities in Fourier analysis , 1975 .
[4] E. Lieb,et al. Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three Functions , 1976 .
[5] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[6] Keith Ball. Shadows of convex bodies , 1989 .
[7] Keith Ball,et al. Volume Ratios and a Reverse Isoperimetric Inequality , 1989, math/9201205.
[8] K. Ball. Volumes of sections of cubes and related problems , 1989 .
[9] E. Lieb. Gaussian kernels have only Gaussian maximizers , 1990 .
[10] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[11] L. Caffarelli. The regularity of mappings with a convex potential , 1992 .
[12] R. McCann. A convexity theory for interacting gases and equilibrium crystals , 1994 .
[13] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[14] F. Barthe. Optimal young's inequality and its converse: a simple proof , 1997, math/9704210.
[15] Franck Barthe,et al. Inégalités de Brascamp-Lieb et convexité , 1997 .
[16] Franck Barthe,et al. An extremal property of the mean width of the simplex , 1998 .
[17] Elliott H. Lieb,et al. A General Rearrangement Inequality for Multiple Integrals , .