A Mononuclear Nonheme Iron(V)-Imido Complex.

Mononuclear nonheme iron(V)-oxo complexes have been reported previously. Herein, we report the first example of a mononuclear nonheme iron(V)-imido complex bearing a tetraamido macrocyclic ligand (TAML), [(TAML)FeV(NTs)]- (1). The spectroscopic characterization of 1 revealed an S = 1/2 Fe(V) oxidation state, an Fe-N bond length of 1.65(4) Å, and an Fe-N vibration at 817 cm-1. The reactivity of 1 was demonstrated in C-H bond functionalization and nitrene transfer reactions.

[1]  D. Dickie,et al.  Spectroscopic and Computational Studies of Spin States of Iron(IV) Nitrido and Imido Complexes. , 2017, Inorganic chemistry.

[2]  P. Maldivi,et al.  Redox Self-Adaptation of a Nitrene Transfer Catalyst to the Substrate Needs. , 2017, Angewandte Chemie.

[3]  A. Ryabov,et al.  NaClO-Generated Iron(IV)oxo and Iron(V)oxo TAMLs in Pure Water. , 2016, Journal of the American Chemical Society.

[4]  K. Ray,et al.  Oxidation Reactions with Bioinspired Mononuclear Non-Heme Metal-Oxo Complexes. , 2016, Angewandte Chemie.

[5]  K. Ohkubo,et al.  Enhanced Electron Transfer Reactivity of a Nonheme Iron(IV)-Imido Complex as Compared to the Iron(IV)-Oxo Analogue. , 2016, Angewandte Chemie.

[6]  S. Shaik,et al.  To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes. , 2016, Chemical Society reviews.

[7]  T. Betley,et al.  Characterization of Iron-Imido Species Relevant for N-Group Transfer Chemistry. , 2016, Journal of the American Chemical Society.

[8]  A. Borovik,et al.  Molecular designs for controlling the local environments around metal ions. , 2015, Accounts of chemical research.

[9]  L. Que,et al.  Toward the Synthesis of More Reactive S = 2 Non-Heme Oxoiron(IV) Complexes , 2015, Accounts of chemical research.

[10]  P. Carroll,et al.  A cis-divacant octahedral and mononuclear iron(IV) imide. , 2014, Angewandte Chemie.

[11]  S. D. de Visser,et al.  Long-range electron transfer triggers mechanistic differences between iron(IV)-oxo and iron(IV)-imido oxidants. , 2014, Journal of the American Chemical Society.

[12]  Kundan K. Singh,et al.  Homogeneous photochemical water oxidation by biuret-modified Fe-TAML: evidence of Fe(V)(O) intermediate. , 2014, Journal of the American Chemical Society.

[13]  Kyung‐Bin Cho,et al.  Mechanistic insight into the hydroxylation of alkanes by a nonheme iron(V)-oxo complex. , 2014, Chemical communications.

[14]  S. Fukuzumi,et al.  Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes. , 2014, Accounts of chemical research.

[15]  P. Maldivi,et al.  A diiron(III,IV) imido species very active in nitrene-transfer reactions. , 2014, Angewandte Chemie.

[16]  S. D. de Visser,et al.  Comparison of the reactivity of nonheme iron(IV)-oxo versus iron(IV)-imido complexes: which is the better oxidant? , 2013, Angewandte Chemie.

[17]  T. Betley,et al.  Complex N-Heterocycle Synthesis via Iron-Catalyzed, Direct C–H Bond Amination , 2013, Science.

[18]  C. Che,et al.  Nonheme iron-mediated amination of C(sp3)-H bonds. Quinquepyridine-supported iron-imide/nitrene intermediates by experimental studies and DFT calculations. , 2013, Journal of the American Chemical Society.

[19]  S. D. de Visser,et al.  Generation of a high-valent iron imido corrolazine complex and NR group transfer reactivity. , 2013, Inorganic chemistry.

[20]  S. P. Visser,et al.  Intrinsic properties and reactivities of mononuclear nonheme iron-oxygen complexes bearing the tetramethylcyclam ligand , 2013 .

[21]  K. Ray,et al.  The biology and chemistry of high-valent iron–oxo and iron–nitrido complexes , 2012, Nature Communications.

[22]  J. Peters,et al.  M≡E and M=E Complexes of Iron and Cobalt that Emphasize Three-fold Symmetry (E = O, N, NR). , 2011, Coordination chemistry reviews.

[23]  M. Abu‐Omar High-valent iron and manganese complexes of corrole and porphyrin in atom transfer and dioxygen evolving catalysis. , 2011, Dalton transactions.

[24]  C. Che,et al.  Selective functionalisation of saturated C-H bonds with metalloporphyrin catalysts. , 2011, Chemical Society reviews.

[25]  Jeremy M. Smith,et al.  Structural and spectroscopic characterization of an electrophilic iron nitrido complex. , 2008, Journal of the American Chemical Society.

[26]  Haobin Wang,et al.  Thermodynamics of hydrogen atom transfer to a high-valent iron imido complex. , 2008, Journal of the American Chemical Society.

[27]  H. Davies,et al.  Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion , 2008, Nature.

[28]  Arani Chanda,et al.  Chemical and Spectroscopic Evidence for an FeV-Oxo Complex , 2007, Science.

[29]  J. Conradie,et al.  Bonding in Low-Coordinate Environments:  Electronic Structure of Pseudotetrahedral Iron-Imido Complexes. , 2007, Journal of chemical theory and computation.

[30]  L. Que,et al.  A tosylimido analogue of a nonheme oxoiron(IV) complex. , 2006, Angewandte Chemie.

[31]  Steven D. Brown,et al.  Vibrational spectroscopy and analysis of pseudo-tetrahedral complexes with metal imido bonds. , 2006, Inorganic chemistry.

[32]  Christine M. Thomas,et al.  Characterization of the terminal iron(IV) imides [[PhBP(t)(Bu)2(pz')]Fe(IV)NAd]+. , 2006, Journal of the American Chemical Society.

[33]  P. Chirik,et al.  Synthesis and hydrogenation of bis(imino)pyridine iron imides. , 2006, Journal of the American Chemical Society.

[34]  S. I. Gorelsky,et al.  Spectroscopic and DFT investigation of [M{HB(3,5-iPr2pz)3}(SC6F5)] (M = Mn, Fe, Co, Ni, Cu, and Zn) model complexes: periodic trends in metal-thiolate bonding. , 2005, Inorganic chemistry.

[35]  L. Que,et al.  Nonheme FeIVO complexes that can oxidize the C-H bonds of cyclohexane at room temperature. , 2004, Journal of the American Chemical Society.

[36]  M. Abu‐Omar,et al.  Nitrido and imido transition metal complexes of Groups 6–8 , 2003 .

[37]  K. Nakamoto,et al.  Resonance raman spectra of nitridoiron(V) porphyrin intermediates produced by laser photolysis , 1989 .