The resolution complexity of random constraint satisfaction problems

We consider random instances of constraint satisfaction problems where each variable has domain size d, and each constraint contains t restrictions on k variables. For each (d, k, t) we determine whether the resolution complexity is a.s. constant, polynomial or exponential in the number of variables. For a particular range of (d, k, t) we determine a sharp threshold for resolution complexity where the resolution complexity drops from a.s. exponential to a.s. polynomial when the clause density passes a specific value.

[1]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[2]  Martin E. Dyer,et al.  A probabilistic analysis of randomly generated binary constraint satisfaction problems , 2003, Theor. Comput. Sci..

[3]  Nadia Creignou Random generalized satisfiability problems , 2002 .

[4]  Nadia Creignou,et al.  Coarse and Sharp Transitions for Random Generalized Satisfyability Problems , 2004 .

[5]  Yong Gao,et al.  Resolution complexity of random constraint satisfaction problems: Another half of the story , 2003, Discret. Appl. Math..

[6]  Yannis C. Stamatiou,et al.  Approximating the unsatisfiability threshold of random formulas , 1998, Random Struct. Algorithms.

[7]  Dimitris Achlioptas,et al.  Lower bounds for random 3-SAT via differential equations , 2001, Theor. Comput. Sci..

[8]  Michael E. Saks,et al.  The Efficiency of Resolution and Davis--Putnam Procedures , 2002, SIAM J. Comput..

[9]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[10]  David G. Mitchell,et al.  Resolution Complexity of Random Constraints , 2002, CP.

[11]  Rémi Monasson,et al.  2+p-SAT: Relation of typical-case complexity to the nature of the phase transition , 1999, Random Struct. Algorithms.

[12]  Michael Molloy,et al.  Models for Random Constraint Satisfaction Problems , 2003, SIAM J. Comput..

[13]  Toniann Pitassi,et al.  Simplified and improved resolution lower bounds , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[14]  Olivier Dubois,et al.  The 3-XORSAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[15]  S. Kirkpatrick,et al.  Phase transition and search cost in the 2+p-sat problem , 1996 .

[16]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction: A More Accurate Picture , 1997, CP.

[17]  Wenceslas Fernandez de la Vega,et al.  Random 2-SAT: results and problems , 2001, Theor. Comput. Sci..

[18]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[19]  Alasdair Urquhart,et al.  Formal Languages]: Mathematical Logic--mechanical theorem proving , 2022 .

[20]  H. Levesque,et al.  The resolution complexity of constraint satisfaction , 2002 .

[21]  Michael Molloy,et al.  A sharp threshold in proof complexity , 2001, STOC '01.

[22]  R. Zecchina,et al.  Tricritical points in random combinatorics: the -SAT case , 1998, cond-mat/9810008.

[23]  Armin Haken,et al.  The Intractability of Resolution , 1985, Theor. Comput. Sci..

[24]  Evangelos Kranakis,et al.  Rigorous results for random (2+p)-SAT , 2001, Theor. Comput. Sci..

[25]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[26]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[27]  Nadia Creignou,et al.  Satisfiability Threshold for Random XOR-CNF Formulas , 1999, Discret. Appl. Math..

[28]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[29]  Nadia Creignou,et al.  Approximating The Satisfiability Threshold For Random K-Xor-Formulas , 2003, Comb. Probab. Comput..

[30]  Andreas Goerdt,et al.  A Threshold for Unsatisfiability , 1992, MFCS.

[31]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.