The Z2-graded Schouten–Nijenhuis bracket and generalized super-Poisson structures
暂无分享,去创建一个
[1] L. Takhtajan. Nambu mechanics , based on the deformation theory , path integral formulation and on , 1993, hep-th/9301111.
[2] J. M. Izquierdo,et al. On the generalizations of Poisson structures , 1997 .
[3] J. A. Azcárraga,et al. Higher order simple Lie algebras , 1996, hep-th/9605213.
[4] M. Kontsevich,et al. The Geometry of the Master Equation and Topological Quantum Field Theory , 1995, hep-th/9502010.
[5] J. Grabowski. Z-Graded Extensions of Poisson Brackets , 1997 .
[6] P. Bouwknegt. Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics , 1996 .
[7] J. A. Azcárraga,et al. THE SCHOUTEN-NIJENHUIS BRACKET, COHOMOLOGY AND GENERALIZED POISSON STRUCTURES , 1996, hep-th/9605067.
[8] J. A. Azcárraga,et al. New generalized Poisson structures , 1996, q-alg/9601007.
[9] Yvette Kosmann-Schwarzbach,et al. From Poisson algebras to Gerstenhaber algebras , 1996 .
[10] J. M. Izquierdo,et al. Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics: A first look at cohomology of groups and related topics , 1995 .
[11] J. Gomis,et al. Antibracket, antifields and gauge-theory quantization , 1994, hep-th/9412228.
[12] Bong H. Lian,et al. New perspectives on the BRST-algebraic structure of string theory , 1992, hep-th/9211072.
[13] A. Sergeev. Analogue of the classical invariant theory for Lie superalgebras , 1992 .
[14] B. Zwiebach. Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation , 1992, hep-th/9206084.
[15] A. Schwarz. Geometry of Batalin-Vilkovisky quantization , 1992, hep-th/9205088.
[16] J. Monterde. A characterization of graded symplectic structures , 1992 .
[17] P. Michor,et al. The multigraded Nijenhuis-Richardson algebra, its universal property and applications , 1992, math/9201257.
[18] F. Cantrijn,et al. Introduction to Poisson supermanifolds , 1991 .
[19] I. Krasil’shchik. Supercanonical algebras and Schouten brackets , 1991 .
[20] E. Witten. A Note on the Antibracket Formalism , 1990 .
[21] R. Cianci. Introduction to supermanifolds , 1990 .
[22] A. Kirillov,et al. Introduction to Superanalysis , 1987 .
[23] M. Scheunert. Invariant supersymmetric multilinear forms and the Casimir elements of P‐type Lie superalgebras , 1987 .
[24] S. Sternberg,et al. Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras , 1987 .
[25] B. Kupershmidt. Odd and even Poisson brackets in dynamical systems , 1985 .
[26] M. Scheunert. Casimir Elements of Lie Superalgebras , 1984 .
[27] S. Sternberg,et al. Differential geometric methods in mathematical physics , 1984 .
[28] V. Kac. Laplace operators of infinite-dimensional Lie algebras and theta functions. , 1984, Proceedings of the National Academy of Sciences of the United States of America.
[29] I. Batalin,et al. Quantization of Gauge Theories with Linearly Dependent Generators , 1983 .
[30] A. Rogers. A Global Theory of Supermanifolds , 1980 .
[31] Marjorie Batchelor. Two approaches to supermanifolds , 1980 .
[32] M. Scheunert,et al. The Theory of Lie Superalgebras: An Introduction , 1979 .
[33] H. S. Green,et al. Casimir invariants and characteristic identities for generators of the general linear, special linear and orthosymplectic graded Lie algebras , 1979 .
[34] M. Scheunert,et al. The Theory of Lie Superalgebras , 1979 .
[35] M. Hirayama. Realization of Nambu mechanics: A particle interacting with an SU(2) monopole , 1977 .
[36] V. Kac. A sketch of Lie superalgebra theory , 1977 .
[37] A. Lichnerowicz,et al. Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .
[38] B. Kostant,et al. Graded manifolds, graded Lie theory, and prequantization , 1977 .
[39] E. Sudarshan,et al. Relation between Nambu and Hamiltonian mechanics , 1976 .
[40] F. Bayen,et al. Remarks concerning Nambu's generalized mechanics , 1975 .
[41] Paul Adrien Maurice Dirac,et al. Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[42] A. Nijenhuis,et al. Theory of Vector-Valued Differential Forms: Part I. Derivations in the Graded Ring of Differential Forms , 1956 .
[43] A. Nijenhuis. Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II , 1955 .
[44] Samuel Eilenberg,et al. Cohomology Theory of Lie Groups and Lie Algebras , 1948 .