The Z2-graded Schouten–Nijenhuis bracket and generalized super-Poisson structures

The super or Z2-graded Schouten–Nijenhuis bracket is introduced. Using it, new generalized super-Poisson structures are found which are given in terms of certain graded-skew-symmetric contravariant tensors Λ of even order. The corresponding super “Jacobi identities” are expressed by stating that these tensors have a zero super Schouten–Nijenhuis bracket with themselves [Λ,Λ]=0. As a particular case, we provide the linear generalized super-Poisson structures which can be constructed on the dual spaces of simple superalgebras with a non-degenerate Killing metric. The su(3,1) superalgebra is given as a representative example.

[1]  L. Takhtajan Nambu mechanics , based on the deformation theory , path integral formulation and on , 1993, hep-th/9301111.

[2]  J. M. Izquierdo,et al.  On the generalizations of Poisson structures , 1997 .

[3]  J. A. Azcárraga,et al.  Higher order simple Lie algebras , 1996, hep-th/9605213.

[4]  M. Kontsevich,et al.  The Geometry of the Master Equation and Topological Quantum Field Theory , 1995, hep-th/9502010.

[5]  J. Grabowski Z-Graded Extensions of Poisson Brackets , 1997 .

[6]  P. Bouwknegt Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics , 1996 .

[7]  J. A. Azcárraga,et al.  THE SCHOUTEN-NIJENHUIS BRACKET, COHOMOLOGY AND GENERALIZED POISSON STRUCTURES , 1996, hep-th/9605067.

[8]  J. A. Azcárraga,et al.  New generalized Poisson structures , 1996, q-alg/9601007.

[9]  Yvette Kosmann-Schwarzbach,et al.  From Poisson algebras to Gerstenhaber algebras , 1996 .

[10]  J. M. Izquierdo,et al.  Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics: A first look at cohomology of groups and related topics , 1995 .

[11]  J. Gomis,et al.  Antibracket, antifields and gauge-theory quantization , 1994, hep-th/9412228.

[12]  Bong H. Lian,et al.  New perspectives on the BRST-algebraic structure of string theory , 1992, hep-th/9211072.

[13]  A. Sergeev Analogue of the classical invariant theory for Lie superalgebras , 1992 .

[14]  B. Zwiebach Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation , 1992, hep-th/9206084.

[15]  A. Schwarz Geometry of Batalin-Vilkovisky quantization , 1992, hep-th/9205088.

[16]  J. Monterde A characterization of graded symplectic structures , 1992 .

[17]  P. Michor,et al.  The multigraded Nijenhuis-Richardson algebra, its universal property and applications , 1992, math/9201257.

[18]  F. Cantrijn,et al.  Introduction to Poisson supermanifolds , 1991 .

[19]  I. Krasil’shchik Supercanonical algebras and Schouten brackets , 1991 .

[20]  E. Witten A Note on the Antibracket Formalism , 1990 .

[21]  R. Cianci Introduction to supermanifolds , 1990 .

[22]  A. Kirillov,et al.  Introduction to Superanalysis , 1987 .

[23]  M. Scheunert Invariant supersymmetric multilinear forms and the Casimir elements of P‐type Lie superalgebras , 1987 .

[24]  S. Sternberg,et al.  Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras , 1987 .

[25]  B. Kupershmidt Odd and even Poisson brackets in dynamical systems , 1985 .

[26]  M. Scheunert Casimir Elements of Lie Superalgebras , 1984 .

[27]  S. Sternberg,et al.  Differential geometric methods in mathematical physics , 1984 .

[28]  V. Kac Laplace operators of infinite-dimensional Lie algebras and theta functions. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[29]  I. Batalin,et al.  Quantization of Gauge Theories with Linearly Dependent Generators , 1983 .

[30]  A. Rogers A Global Theory of Supermanifolds , 1980 .

[31]  Marjorie Batchelor Two approaches to supermanifolds , 1980 .

[32]  M. Scheunert,et al.  The Theory of Lie Superalgebras: An Introduction , 1979 .

[33]  H. S. Green,et al.  Casimir invariants and characteristic identities for generators of the general linear, special linear and orthosymplectic graded Lie algebras , 1979 .

[34]  M. Scheunert,et al.  The Theory of Lie Superalgebras , 1979 .

[35]  M. Hirayama Realization of Nambu mechanics: A particle interacting with an SU(2) monopole , 1977 .

[36]  V. Kac A sketch of Lie superalgebra theory , 1977 .

[37]  A. Lichnerowicz,et al.  Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .

[38]  B. Kostant,et al.  Graded manifolds, graded Lie theory, and prequantization , 1977 .

[39]  E. Sudarshan,et al.  Relation between Nambu and Hamiltonian mechanics , 1976 .

[40]  F. Bayen,et al.  Remarks concerning Nambu's generalized mechanics , 1975 .

[41]  Paul Adrien Maurice Dirac,et al.  Generalized Hamiltonian dynamics , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[42]  A. Nijenhuis,et al.  Theory of Vector-Valued Differential Forms: Part I. Derivations in the Graded Ring of Differential Forms , 1956 .

[43]  A. Nijenhuis Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II , 1955 .

[44]  Samuel Eilenberg,et al.  Cohomology Theory of Lie Groups and Lie Algebras , 1948 .