Algorithmic Arithmetic Fewnomial Theory I: One Variable

Withdrawn by the authors due to an error in the proof of the finite field result (Thm. 1.5): The random primes used in the proof need NOT avoid the exceptional primes from Lemma 2.7, thus leaving Thm. 1.5 unproved.

[1]  Adi Shamir,et al.  Cryptanalysis of the HFE Public Key Cryptosystem by Relinearization , 1999, CRYPTO.

[2]  Yu. V. Matijasevič On Recursive Unsolvability of Hilbert's Tenth Problem , 1973 .

[3]  L. Lipshitz,et al.  p-adic zeros of polynomials. , 1988 .

[4]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[5]  Paul J. Cohen,et al.  Decision procedures for real and p‐adic fields , 1969 .

[6]  D. Cantor,et al.  A new algorithm for factoring polynomials over finite fields , 1981 .

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Marek Karpinski,et al.  On the Computational Hardness of Testing Square-Freeness of Sparse Polynomials , 1999, AAECC.

[9]  Erich Kaltofen,et al.  Polynomial factorization: a success story , 2003, ISSAC '03.

[10]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[11]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[12]  C. Pomerance,et al.  There are infinitely many Carmichael numbers , 1994 .

[13]  J. Maurice Rojas Computational Arithmetic Geometry I. Sentences Nearly in the Polynomial Hierarchy , 2001, J. Comput. Syst. Sci..

[14]  B. Poonen An explicit algebraic family of genus-one curves violating the Hasse principle , 1999, math/9910124.

[15]  Joseph H. Silverman,et al.  The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.

[16]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[17]  J. Maurice Rojas,et al.  First Steps in Algorithmic Fewnomial Theory , 2004, math/0411107.

[18]  A. Robert,et al.  A Course in p-adic Analysis , 2000 .

[19]  Marek Karpinski,et al.  Counting curves and their projections , 2005, computational complexity.

[20]  Erich Kaltofen,et al.  Finding small degree factors of multivariate supersparse (lacunary) polynomials over algebraic number fields , 2006, ISSAC '06.

[21]  Alan G. B. Lauder Counting Solutions to Equations in Many Variables over Finite Fields , 2004, Found. Comput. Math..

[22]  Shuhong Gao On the Deterministic Complexity of Factoring Polynomials , 2001, J. Symb. Comput..

[23]  Wouter Castryck,et al.  Computing Zeta Functions of Nondegenerate Curves , 2006, IACR Cryptol. ePrint Arch..

[24]  J. Conway,et al.  Trigonometric diophantine equations (On vanishing sums of roots of unity) , 1976 .

[25]  D. Cantor,et al.  Factoring polynomials over p-adic fields , 2000 .

[26]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[27]  Jan Denef,et al.  P-adic and real subanalytic sets , 1988 .

[28]  M. Mignotte Some Useful Bounds , 1983 .

[29]  H. Lenstra Finding small degree factors of lacunary polynomials , 1999 .

[30]  David A. Plaisted,et al.  New NP-hard and NP-complete polynomial and integer divisibility problems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).