Robust estimation of Pareto-type tail index through an exponential regression model

In this paper, we introduce a robust estimator of the tail index of a Pareto-type distribution. The estimator is obtained through the use of the minimum density power divergence with an exponential...

[1]  Johan Segers,et al.  Second-order refined peaks-over-threshold modelling for heavy-tailed distributions , 2009, 0901.1518.

[2]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[3]  A. Guillou,et al.  Robust and asymptotically unbiased estimation of extreme quantiles for heavy tailed distributions , 2014 .

[4]  Armelle Guillou,et al.  An asymptotically unbiased minimum density power divergence estimator for the Pareto-tail index , 2013, J. Multivar. Anal..

[5]  C. Field,et al.  Robust estimation of extremes , 1998 .

[6]  M. C. Jones,et al.  Robust and efficient estimation by minimising a density power divergence , 1998 .

[7]  Sangyeol Lee,et al.  Estimation of a tail index based on minimum density power divergence , 2008 .

[8]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[10]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[11]  Jan Beirlant,et al.  Tail Index Estimation and an Exponential Regression Model , 1999 .

[12]  Abhik Ghosh,et al.  Divergence based robust estimation of the tail index through an exponential regression model , 2014, Statistical Methods & Applications.

[13]  R. Serfling,et al.  Robust and Efficient Estimation of the Tail Index of a Single-Parameter Pareto Distribution , 2000 .

[14]  Jan Beirlant,et al.  ESTIMATING THE EXTREME VALUE INDEX AND HIGH QUANTILES WITH EXPONENTIAL REGRESSION MODELS , 2003 .

[15]  Richard L. Smith,et al.  Models for exceedances over high thresholds , 1990 .

[16]  B. Gnedenko Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire , 1943 .

[17]  A. Basu,et al.  Robust estimation for independent non-homogeneous observations using density power divergence with applications to linear regression , 2013 .

[18]  P. Embrechts,et al.  Extremes and Robustness: A Contradiction? , 2006 .

[19]  L. Haan,et al.  Extreme value theory , 2006 .

[20]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[21]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[22]  A. Guillou,et al.  Local Robust Estimation of Pareto-Type Tails with Random Right Censoring , 2019, Sankhya A.

[23]  Liang Peng,et al.  Robust Estimation of the Generalized Pareto Distribution , 2001 .

[24]  Andreas Christmann,et al.  A robust estimator for the tail index of Pareto-type distributions , 2007, Comput. Stat. Data Anal..

[25]  William R. Schucany,et al.  Robust and Efficient Estimation for the Generalized Pareto Distribution , 2004 .

[26]  Small sample performance of robust estimators of tail parameters for pareto and exponential models , 2001 .

[27]  L. Haan,et al.  A moment estimator for the index of an extreme-value distribution , 1989 .