Position-based visual servo control of autonomous robotic manipulators

Abstract This paper concerns the position-based visual servo control of autonomous robotic manipulators in space. It focuses on the development of a real-time vision-based pose and motion estimation algorithm of a non-cooperative target by photogrammetry and extended Kalman filter for robotic manipulators to perform autonomous capture. Optical flow algorithm is adopted to track the target features in order to improve the image processing efficiency. Then, a close-loop position-based visual servo control strategy is devised to determine the desired pose of the end-effector at the rendezvous point based on the estimated pose and motion of the target. The corresponding desired joint angles of the robotic manipulator in the joint space are derived by the inverse kinematics of the robotic manipulator. The developed algorithm and position-based visual servo control strategy are validated experimentally by a custom built robotic manipulator with an eye-in-hand configuration. The experimental results demonstrate the proposed estimation algorithm and control scheme are feasible and effective.

[1]  Fumihiro Kuwao,et al.  Development of Japanese experiment module remote manipulator system , 1994 .

[2]  R. Boumans,et al.  The European Robotic Arm for the International Space Station , 1998, Robotics Auton. Syst..

[3]  Junku Yuh,et al.  Design and Control of Autonomous Underwater Robots: A Survey , 2000, Auton. Robots.

[4]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[5]  Kamal K. Gupta,et al.  Path planning for image-based control of wheeled mobile manipulators , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Siddhartha S. Mehta,et al.  Vision-based control of robotic manipulator for citrus harvesting , 2014 .

[7]  Miguel A. Olivares-Méndez,et al.  On-board and Ground Visual Pose Estimation Techniques for UAV Control , 2011, J. Intell. Robotic Syst..

[8]  Qiang Zhang,et al.  Practical smooth minimum time trajectory planning for path following robotic manipulators , 2013, 2013 American Control Conference.

[9]  Alois Knoll,et al.  3D image-based dynamic visual servoing with uncalibrated stereo cameras , 2013, IEEE ISR 2013.

[10]  Danica Kragic,et al.  Survey on Visual Servoing for Manipulation , 2002 .

[11]  K. M. Deliparaschos,et al.  Evolution of autonomous and semi‐autonomous robotic surgical systems: a review of the literature , 2011, The international journal of medical robotics + computer assisted surgery : MRCAS.

[12]  Zheng H. Zhu,et al.  Autonomous robotic capture of non-cooperative target using visual servoing and motion predictive control , 2014, Auton. Robots.

[13]  Éric Marchand,et al.  Direct model based visual tracking and pose estimation using mutual information , 2014, Image Vis. Comput..

[14]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[15]  Giovanni B. Palmerini,et al.  Adaptive and robust algorithms and tests for visual-based navigation of a space robotic manipulator☆ , 2013 .

[16]  Klaus Landzettel,et al.  Space Robotics—DLR's Telerobotic Concepts, Lightweight Arms and Articulated Hands , 2003, Auton. Robots.

[17]  Mohammed Marey,et al.  A Kalman-Filter-Based Method for Pose Estimation in Visual Servoing , 2010, IEEE Transactions on Robotics.

[18]  Éric Marchand,et al.  Eye-in-hand/eye-to-hand cooperation for visual servoing , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[19]  Jorge Pomares,et al.  Survey of Visual and Force/Tactile Control of Robots for Physical Interaction in Spain , 2009, Sensors.

[20]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[21]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[22]  Javaid Iqbal,et al.  On the Improvement of Multi-Legged Locomotion over Difficult Terrains Using a Balance Stabilization Method: , 2012 .

[23]  Giuseppe Oriolo,et al.  Visual servoing with exploitation of redundancy: An experimental study , 2008, 2008 IEEE International Conference on Robotics and Automation.

[24]  Kazuya Yoshida,et al.  Achievements in space robotics , 2009, IEEE Robotics & Automation Magazine.

[25]  Giovanni B. Palmerini,et al.  Ground tests for vision based determination and control of formation flying spacecraft trajectories , 2014 .

[26]  Min Wang,et al.  Target Tracking for Visual Servoing Systems Based on an Adaptive Kalman Filter , 2012 .

[27]  M. H. Ghasemi,et al.  Time-optimal trajectory planning of robot manipulators in point-to-point motion using an indirect method , 2012 .

[28]  S. Y. Chen,et al.  Kalman Filter for Robot Vision: A Survey , 2012, IEEE Transactions on Industrial Electronics.

[29]  Hyo-Sung Ahn,et al.  Design and control of tele-matched surgery robot , 2014 .

[30]  C. S. George Lee,et al.  Adaptive image feature prediction and control for visual tracking with a hand-eye coordinated camera , 1990, IEEE Trans. Syst. Man Cybern..

[31]  Hesheng Wang,et al.  Visual tracking of robots in uncalibrated environments , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Giovanni B. Palmerini,et al.  Vibration control of a flexible space manipulator during on orbit operations , 2012 .

[33]  Giovanni B. Palmerini,et al.  Deployable space manipulator commanded by means of visual-based guidance and navigation , 2013 .

[34]  Edward Tunstel,et al.  Mars Exploration Rover mobility and robotic arm operational performance , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.

[35]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.