Streamlines, ray tracing and production tomography: generalization to compressible flow

We exploit an analogy between streamlines and seismic ray tracing to develop an efficient formalism for integrating dynamic data into high-resolution reservoir models. Utilizing concepts from asymptotic ray theory in seismic and diffusive electromagnetic imaging, we generalize the streamline approach to com- pressible flow. A 'diffusive' streamline time-of-flight is introduced for transient pressure calculations. Production data integration is carried out in a manner analogous to seismic tomography and waveform imaging. The power and versatility of our approach is illustrated using synthetic examples that utilize transient pressure, tracer and multiphase production history. A field example from a heterogeneous carbonate reservoir demonstrates the practical feasibility of our approach.

[1]  A. Datta-Gupta,et al.  Asymptotics, Saturation Fronts, and High Resolution Reservoir Characterization , 2001 .

[2]  Michael A. Saunders,et al.  LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares , 1982, TOMS.

[3]  Charles B. Morrey,et al.  Modern Mathematical Analysis , 1968 .

[4]  Clinton N Dawson,et al.  ASYMPTOTIC PROFILES WITH FINITE MASS IN ONE-DIMENSIONAL CONTAMINANT TRANSPORT THROUGH POROUS MEDIA: THE FAST REACTION CASE , 1994 .

[5]  Stanley Osher,et al.  Numerical solution of the high frequency asymptotic expansion for the scalar wave equation , 1995 .

[6]  Uwe Jaekel,et al.  Asymptotic analysis of nonlinear equilibrium solute transport in porous media , 1996 .

[7]  Peter Knabner,et al.  Travelling waves in the transport of reactive solutes through porous media: Adsorption and binary ion exchange — Part 2 , 1992 .

[8]  Gerard T. Schuster,et al.  Wave-equation traveltime inversion , 1991 .

[9]  C. H. Chapman,et al.  Body-wave seismograms in inhomogeneous media using Maslov asymptotic theory , 1982 .

[10]  William W.-G. Yeh,et al.  Coupled inverse problems in groundwater modeling - 1. Sensitivity analysis and parameter identification. , 1990 .

[11]  M. Kline,et al.  Electromagnetic theory and geometrical optics , 1965 .

[12]  Akhil Datta-Gupta,et al.  Integrating dynamic data into high-resolution reservoir models using streamline-based analytic sensitivity coefficients , 1999 .

[13]  Martin J. Blunt,et al.  Streamline‐based simulation of solute transport , 1999 .

[14]  Akhil Datta-Gupta,et al.  Asymptotic solutions for solute transport: A formalism for tracer tomography , 1999 .

[15]  R. K. Luneburg,et al.  Mathematical Theory of Optics , 1966 .

[16]  F. Anterion,et al.  Use of Parameter Gradients for Reservoir History Matching , 1989 .

[17]  B. Kennett Seismic wave propagation and seismic tomography , 1998 .

[18]  R. Parker Geophysical Inverse Theory , 1994 .

[19]  W. Yeh Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem , 1986 .

[20]  Rajagopal Raghavan,et al.  Well Test Analysis , 2018, Petroleum Engineering.

[21]  Akhil Datta-Gupta,et al.  Streamline-Based Production-Data Integration into High-Resolution Reservoir Models , 1998 .

[22]  P. Knabner,et al.  Travelling waves in the transport of reactive solutes through porous media: Adsorption and binary ion exchange — Part 1 , 1992 .

[23]  Akhil Datta-Gupta,et al.  A semianalytic approach to tracer flow modeling in heterogeneous permeable media , 1995 .

[24]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[25]  J. Virieux,et al.  Asymptotic theory for diffusive electromagnetic imaging , 1994 .

[26]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[27]  Pietro Pantano,et al.  Ray Methods for Nonlinear Waves in Fluids and Plasmas , 1993 .

[28]  T. Blasingame,et al.  An Integrated Geologic and Engineering Reservoir Characterization of the North Robertson (Clearfork) Unit: A Case Study, Part 1 , 1995 .

[29]  Martin J. Blunt,et al.  A 3D Field-Scale Streamline-Based Reservoir Simulator , 1997 .

[30]  Akhil Datta-Gupta,et al.  A Multiscale Approach to Production Data Integration Using Streamline Models , 1999 .

[31]  Jack K. Cohen,et al.  A Ray Method for the Asymptotic Solution of the Diffusion Equation , 1967 .

[32]  K. Karasaki,et al.  Estimation of reservoir properties using transient pressure data: An asymptotic approach , 2000 .

[33]  Kyrre Bratvedt,et al.  A New Front-Tracking Method for Reservoir Simulation , 1992 .

[34]  Akhil Datta-Gupta,et al.  Structure Preserving Inversion: An Efficient Approach to Conditioning Stochastic Reservoir Models to Dynamic Data , 1997 .