暂无分享,去创建一个
This manuscript briefly describes an algorithm developed for the ISIC 2017 Skin Lesion Classification Competition. In this task, participants are asked to complete two independent binary image classification tasks that involve three unique diagnoses of skin lesions (melanoma, nevus, and seborrheic keratosis). In the first binary classification task, participants are asked to distinguish between (a) melanoma and (b) nevus and seborrheic keratosis. In the second binary classification task, participants are asked to distinguish between (a) seborrheic keratosis and (b) nevus and melanoma. The other phases of the competition are not considered. Our proposed algorithm consists of three steps: preprocessing, classification using VGG-NET and Random Forests, and calculation of a final score.
[1] Andrew Zisserman,et al. Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.
[2] Sebastian Thrun,et al. Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.
[3] Mei-Chen Yeh,et al. Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).