A geometrically exact isogeometric beam for large displacements and contacts

Abstract This work discusses an efficient formulation of a geometrically exact three-dimensional beam which can be used in dynamical simulations involving large displacements, collisions and non-linear materials. To this end, we base our model on the shear-flexible Cosserat rod theory and we implement it in the context of Isogeometric Analysis (IGA). According to the IGA approach, the centerline of the beam is parameterized using splines; in our work the rotation of the section is parameterized by a spline interpolation of quaternions, and time integration of rotations is performed using the exponential map of quaternions. Aiming at an efficient and robust simulation of contacts, we propose the adoption of a non-smooth dynamics formulation based on differential-variational inequalities. The model has been implemented in an open-source physics simulation library that can simulate actuators, finite elements, rigid bodies, constraints, collisions and frictional contacts. This beam model has been tested on various benchmarks in order to assess its validity in non-linear static and dynamic analysis; in all cases the model behaved consistently with theoretical results and experimental data.

[1]  Yuri Bazilevs,et al.  Variationally consistent domain integration for isogeometric analysis , 2015 .

[2]  P. Masarati On the choice of the reference frame for beam section stiffness properties , 2014 .

[3]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[4]  Alain Combescure,et al.  Locking free isogeometric formulations of curved thick beams , 2012 .

[5]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[6]  Jeffrey C. Trinkle,et al.  Interactive Simulation of Rigid Body Dynamics in Computer Graphics , 2014, Eurographics.

[7]  M. Anitescu,et al.  A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics , 2011 .

[8]  J. J. Traybar,et al.  An Experimental Study of the Nonlinear Stiffness of a Rotor Blade Undergoing Flap, Lag and Twist Deformations , 1975 .

[9]  Carlos A. Felippa,et al.  A unified formulation of small-strain corotational finite elements: I. Theory , 2005 .

[10]  P. Mantegazza,et al.  Multibody Implementation of Finite Volume C-0 Beams , 2000 .

[11]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[12]  Alexander Konyukhov,et al.  Geometrically exact covariant approach for contact between curves , 2010 .

[13]  Enzo Marino,et al.  Locking-free isogeometric collocation formulation for three-dimensional geometrically exact shear-deformable beams with arbitrary initial curvature , 2017 .

[14]  Wolfgang A. Wall,et al.  A Unified Approach for Beam-to-Beam Contact , 2016, ArXiv.

[15]  A. Tasora,et al.  A primal–dual predictor–corrector interior point method for non-smooth contact dynamics , 2018 .

[16]  Josef Kiendl,et al.  An isogeometric collocation method for frictionless contact of Cosserat rods , 2017 .

[17]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[18]  Hammad Mazhar,et al.  CHRONO: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics , 2013 .

[19]  Mostafa M. Abdalla,et al.  An interior point method for isogeometric contact , 2014 .

[20]  Mihai Anitescu,et al.  A fixed-point iteration approach for multibody dynamics with contact and small friction , 2004, Math. Program..

[21]  Dan Negrut,et al.  Posing Multibody Dynamics With Friction and Contact as a Differential Complementarity Problem , 2018 .

[22]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[23]  Peter Wriggers,et al.  Self-contact modeling on beams experiencing loop formation , 2015 .

[24]  Giorgio Zavarise,et al.  Contact with friction between beams in 3‐D space , 2000 .

[25]  Peter Wriggers,et al.  Contact between 3D beams with rectangular cross‐sections , 2002 .

[26]  M. Jean,et al.  Dynamics in the Presence of Unilateral Contacts and Dry Friction: A Numerical Approach , 1987 .

[27]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[28]  Wolfgang A. Wall,et al.  A Finite Element Approach for the Line-to-Line Contact Interaction of Thin Beams with Arbitrary Orientation , 2016, ArXiv.

[29]  O. Bauchau,et al.  A Multibody Formulation for Helicopter Structural Dynamic Analysis , 1993 .

[30]  Sai-Kit Yeung,et al.  Isogeometric collocation methods for Cosserat rods and rod structures , 2017 .

[31]  M. Crisfield A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements , 1990 .

[32]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[33]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[34]  J. C. Simo,et al.  A three-dimensional finite-strain rod model. Part II: Computational aspects , 1986 .

[35]  E. Reissner,et al.  On One‐Dimensional Large‐Displacement Finite‐Strain Beam Theory , 1973 .

[36]  H. Lang,et al.  Multi-body dynamics simulation of geometrically exact Cosserat rods , 2011 .

[37]  Dan Negrut,et al.  The Newmark Integration Method for Simulation of Multibody Systems: Analytical Considerations , 2005 .

[38]  Zhang Liu,et al.  Interior-point methods for large-scale cone programming , 2011 .

[39]  D. Stewart Convergence of a Time‐Stepping Scheme for Rigid‐Body Dynamics and Resolution of Painlevé's Problem , 1998 .

[40]  Habibou Maitournam,et al.  Selective and reduced numerical integrations for NURBS-based isogeometric analysis , 2015 .

[41]  Maher Moakher,et al.  Modeling and numerical treatment of elastic rods with frictionless self-contact , 2009 .

[42]  Leopoldo Greco,et al.  B-Spline interpolation of Kirchhoff-Love space rods , 2013 .

[43]  Peter Wriggers,et al.  Frictional contact between 3D beams , 2002 .

[44]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[45]  Hammad Mazhar,et al.  Leveraging parallel computing in multibody dynamics , 2012 .

[46]  Olivier Bruls,et al.  On the Constraints Formulation in the Nonsmooth Generalized-$$\alpha $$ Method , 2018 .

[47]  Stuart S. Antman,et al.  Kirchhoff’s problem for nonlinearly elastic rods , 1974 .

[48]  J. C. Simo,et al.  A finite strain beam formulation. The three-dimensional dynamic problem. Part I , 1985 .

[49]  Peter Wriggers,et al.  A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method , 2012 .

[50]  Bernd Simeon,et al.  Isogeometric analysis of nonlinear Euler–Bernoulli beam vibrations , 2013 .

[51]  Jong-Shi Pang,et al.  Differential variational inequalities , 2008, Math. Program..

[52]  Alessandro Reali,et al.  Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods , 2012 .

[53]  P. Wriggers,et al.  On contact between three-dimensional beams undergoing large deflections , 1997 .

[54]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[55]  Hammad Mazhar,et al.  Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact , 2015, ACM Trans. Graph..

[56]  Martin L. Dunn,et al.  Isogeometric collocation for nonlinear dynamic analysis of Cosserat rods with frictional contact , 2018 .

[57]  Sigrid Leyendecker,et al.  A discrete mechanics approach to the Cosserat rod theory—Part 1: static equilibria , 2011 .

[58]  Alessandro Reali,et al.  Locking-free isogeometric collocation methods for spatial Timoshenko rods , 2013 .

[59]  Mihai Anitescu,et al.  Using Krylov subspace and spectral methods for solving complementarity problems in many‐body contact dynamics simulation , 2013 .