EXPLORATIONS BEYOND THE SNOW LINE: SPITZER/IRS SPECTRA OF DEBRIS DISKS AROUND SOLAR-TYPE STARS

We have observed 152 nearby solar-type stars with the Infrared Spectrometer (IRS) on the Spitzer Space Telescope. Including stars that met our criteria but were observed in other surveys, we get an overall success rate for finding excesses in the long wavelength IRS band (30-34 micron) of 11.8% +/- 2.4%. The success rate for excesses in the short wavelength band (8.5-12 micron) is ~1% including sources from other surveys. For stars with no excess at 8.5-12 microns, the IRS data set 3 sigma limits of around 1,000 times the level of zodiacal emission present in our solar system, while at 30-34 microns set limits of around 100 times the level of our solar system. Two stars (HD 40136 and HD 10647) show weak evidence for spectral features; the excess emission in the other systems is featureless. If the emitting material consists of large (10 micron) grains as implied by the lack of spectral features, we find that these grains are typically located at or beyond the snow line, ~1-35 AU from the host stars, with an average distance of 14 +/- 6 AU; however smaller grains could be located at significantly greater distances from the host stars. These distances correspond to dust temperatures in the range ~50-450 K. Several of the disks are well modeled by a single dust temperature, possibly indicative of a ring-like structure. However, a single dust temperature does not match the data for other disks in the sample, implying a distribution of temperatures within these disks. For most stars with excesses, we detect an excess at both IRS and MIPS wavelengths. Only three stars in this sample show a MIPS 70 micron excess with no IRS excess, implying that very cold dust is rare around solar-type stars.

[1]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[2]  Mark R. Kidger,et al.  High-Precision Near-Infrared Photometry of a Large Sample of Bright Stars Visible from the Northern Hemisphere , 2003 .

[3]  L. Hartmann,et al.  Mid-Infrared Spectra of Dust Debris around Main-Sequence Stars , 2004, astro-ph/0405632.

[4]  Alessandro Morbidelli,et al.  The Structure of the Kuiper Belt: Size Distribution and Radial Extent , 2001 .

[5]  C. Woodward,et al.  Mg-Rich Silicate Crystals in Comet Hale–Bopp: ISM Relics or Solar Nebula Condensates? , 2000 .

[6]  S. S. Vogt,et al.  The Jupiter Twin HD 154345b , 2008 .

[7]  S. T. Ridgway,et al.  Circumstellar material in the Vega inner system revealed by CHARA/FLUOR , 2006 .

[8]  J. Valenti,et al.  Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs , 2005 .

[9]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[10]  C. Beichman,et al.  SURVEY OF NEARBY FGK STARS AT 160 μm WITH SPITZER , 2009, 0908.0049.

[11]  V. Mannings,et al.  Optical, infrared and millimetre‐wave properties of Vega‐like systems – IV. Observations of a new sample of candidate Vega‐like sources , 2000 .

[12]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XIII. A planetary system with 3 super-Earths (4.2, 6.9, and 9.2 M) , 2008, 0806.4587.

[13]  O. Eggen Kinematics and Metallicity of Stars in the Solar Region , 1998 .

[14]  Robert L. Kurucz,et al.  Model Atmospheres for Population Synthesis , 1992 .

[15]  M. C. Wyatt,et al.  On the Nature of the Dust in the Debris Disk around HD 69830 , 2006, astro-ph/0611452.

[16]  A. Renzini,et al.  The Stellar Populations of Galaxies , 1992 .

[17]  M. Meyer,et al.  The Formation and Evolution of Planetary Systems: Description of the Spitzer Legacy Science Database , 2008, 0807.4362.

[18]  C. G. Tinney,et al.  Catalog of nearby exoplanets , 2006 .

[19]  A. Buzzoni,et al.  ATLAS Versus NextGen Model Atmospheres: A Combined Analysis of Synthetic Spectral Energy Distributions , 2004, astro-ph/0406215.

[20]  K. Y. L. Su,et al.  Debris Disks around Sun-like Stars , 2007, 0710.5498.

[21]  B. Zuckerman,et al.  Extreme collisions between planetesimals as the origin of warm dust around a Sun-like star , 2005, Nature.

[22]  L. Mashonkina,et al.  Heavy element abundances in cool dwarf stars: An implication for the evolution of the Galaxy ? , 2001 .

[23]  J. S. Dohnanyi Collisional model of asteroids and their debris , 1969 .

[24]  F. Gillett,et al.  Debris disks and the formation of planets , 2004 .

[25]  G. Rieke,et al.  Far-Infrared Properties of M Dwarfs , 2007, 0707.0464.

[26]  R. Knacke,et al.  Detection of silicates in the 51 Ophiuchi system , 1993 .

[27]  Jason T. Wright,et al.  Chromospheric Ca II Emission in Nearby F, G, K, and M Stars , 2004, astro-ph/0402582.

[28]  P. Kalas,et al.  In the Spirit of Bernard Lyot: The Direct Detection of Planets and Circumstellar Disks in the 21st Century. , 2007 .

[29]  IRS Spectra of Solar-Type Stars: A Search for Asteroid Belt Analogs , 2006, astro-ph/0601468.

[30]  et al,et al.  New Debris Disks around Nearby Main-Sequence Stars: Impact on the Direct Detection of Planets , 2006, astro-ph/0611682.

[31]  K. H. Kim,et al.  Spitzer IRS Spectroscopy of IRAS-discovered Debris Disks , 2006, astro-ph/0605277.

[32]  K. Rice,et al.  Protostars and Planets V , 2005 .

[33]  Wm. A. Wheaton,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. II. 70 μm Imaging , 2007, 0704.2196.

[34]  R. Smith,et al.  Transience of Hot Dust around Sun-like Stars , 2006, astro-ph/0610102.

[35]  A. Vidal-Madjar,et al.  A three-year Strömgren photometric survey of suspected β Pictoris-like stars , 2000 .

[36]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[37]  A. Moro-martin,et al.  The Complete Census of 70 μm-Bright Debris Disks within “The Formation and Evolution of Planetary Systems” Spitzer Legacy Survey of Sun-like Stars , 2007, 0801.0163.

[38]  J. R. Houck,et al.  The Infrared Spectrograph (IRS) on the Spitzer Space Telescope , 2004, astro-ph/0406167.

[39]  M. McElwain,et al.  Characterization of Dusty Debris Disks: The IRAS and Hipparcos Catalogs , 2006, astro-ph/0609555.

[40]  B. J. Taylor Statistical cataloging of archival data for luminosity class IV-V stars - II. The epoch 2001 [Fe/H] catalog , 2003 .

[41]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[42]  Elizabeth A. Lada,et al.  On the Near-Infrared Size of Vega , 2001, astro-ph/0105561.

[43]  To appear in The Astrophysical Journal An Excess Due to Small Grains Around The Nearby K0V Star HD69830: Asteroid or Cometary Debris? , 2005 .

[44]  F. Thévenin,et al.  Age and Abundance Effects in Single-Stellar Populations , 1995 .

[45]  K. Y. L. Su,et al.  accepted for publication in ApJ Preprint typeset using L ATEX style emulateapj v. 2/19/04 DEBRIS DISK EVOLUTION AROUND A STARS , 2006 .

[46]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[47]  C. Chen,et al.  Circumstellar Dust Created by Terrestrial Planet Formation in HD 113766 , 2007, 0710.0839.

[48]  et al,et al.  Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey , 2005, astro-ph/0509199.

[49]  B. Zuckerman,et al.  Dusty Debris Disks as Signposts of Planets: Implications for Spitzer Space Telescope , 2003, astro-ph/0311546.

[50]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[51]  D. C. Barry The Chromospheric Age Dependence of the Birthrate, Composition, Motions, and Rotation of Late F and G Dwarfs within 25 Parsecs of the Sun , 1988 .

[52]  R. O. Gray,et al.  ABSOLUTE PHYSICAL CALIBRATION IN THE INFRARED , 2008, 0806.1910.

[53]  R. Knacke,et al.  Detection of Silicates in the beta Pictoris Disk , 1991 .

[54]  Peter Plavchan,et al.  NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE , 2009, 0904.0819.

[55]  David R. Alexander,et al.  The NEXTGEN Model Atmosphere Grid. II. Spherically Symmetric Model Atmospheres for Giant Stars with Effective Temperatures between 3000 and 6800 K , 1999, astro-ph/9907194.

[56]  Michel Mayor,et al.  An extrasolar planetary system with three Neptune-mass planets , 2006, Nature.

[57]  Paul S. Smith,et al.  The Multiband Imaging Photometer for Spitzer (MIPS) , 2004 .

[58]  H. Rocha-Pinto,et al.  Metallicity effects on the chromospheric activity–age relation for late‐type dwarfs , 1998, astro-ph/9803219.

[59]  S. T. Megeath,et al.  The Vega debris disk: A surprise from spitzer , 2005 .

[60]  Patrick Morris,et al.  The mid-infrared spectrum of the zodiacal and exozodiacal light , 2003 .

[61]  Paul S. Smith,et al.  Reduction Algorithms for the Multiband Imaging Photometer for Spitzer , 2005, astro-ph/0502079.

[62]  J. Burns,et al.  Radiation forces on small particles in the solar system , 1979 .

[63]  D. Queloz,et al.  The HARPS search for southern extra-solar planets - V. A 14 Earth-masses planet orbiting HD 4308 , 2006 .

[64]  K. Y. L. Su,et al.  PLANETS AND INFRARED EXCESSES: PRELIMINARY RESULTS FROM A SPITZER MIPS SURVEY OF SOLAR-TYPE STARS , 2005 .

[65]  F. Allard,et al.  The NextGen Model Atmosphere Grid for 3000 ≤ Teff ≤ 10,000 K , 1998, astro-ph/9807286.

[66]  Spitzer 24 μm Observations of Open Cluster IC 2391 and Debris Disk Evolution of FGK Stars , 2006, astro-ph/0609141.

[67]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[68]  D. Padgett,et al.  Absolute Calibration and Characterization of the Multiband Imaging Photometer for Spitzer. I. The Stellar Calibrator Sample and the 24 μm Calibration , 2007, 0704.2195.