Different Origins of Gamma Rhythm and High-Gamma Activity in Macaque Visual Cortex

High-gamma (80–200 Hz) activity can be dissociated from gamma rhythms in the monkey cortex, and appears largely to reflect spiking activity in the vicinity of the electrode.

[1]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[2]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[3]  U. Mitzdorf Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena. , 1985, Physiological reviews.

[4]  G. Buzsáki,et al.  High-frequency network oscillation in the hippocampus. , 1992, Science.

[5]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[6]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[7]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[9]  C. Gray,et al.  Stimulus-Dependent Neuronal Oscillations and Local Synchronization in Striate Cortex of the Alert Cat , 1997, The Journal of Neuroscience.

[10]  G. Buzsáki,et al.  Somadendritic backpropagation of action potentials in cortical pyramidal cells of the awake rat. , 1998, Journal of neurophysiology.

[11]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. , 1998, Brain : a journal of neurology.

[12]  R. Lesser,et al.  Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. , 1998, Brain : a journal of neurology.

[13]  D. Barth,et al.  Spatiotemporal organization of fast (>200 Hz) electrical oscillations in rat Vibrissa/Barrel cortex. , 1999, Journal of neurophysiology.

[14]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[15]  R. Traub,et al.  Inhibition-based rhythms: experimental and mathematical observations on network dynamics. , 2000, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[16]  E. Niebur,et al.  Growth patterns in the developing brain detected by using continuum mechanical tensor maps , 2022 .

[17]  C. Gray,et al.  Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations. , 2000, Cerebral cortex.

[18]  Roman Bauer,et al.  Fast oscillations display sharper orientation tuning than slower components of the same recordings in striate cortex of the awake monkey , 2000, The European journal of neuroscience.

[19]  F. Dudek,et al.  Intracellular correlates of fast (>200 Hz) electrical oscillations in rat somatosensory cortex. , 2000, Journal of neurophysiology.

[20]  Partha P. Mitra,et al.  Sampling Properties of the Spectrum and Coherency of Sequences of Action Potentials , 2000, Neural Computation.

[21]  D. Barth,et al.  Effects of bicuculline methiodide on fast (>200 Hz) electrical oscillations in rat somatosensory cortex. , 2002, Journal of neurophysiology.

[22]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[23]  Roger D. Traub,et al.  Simulation of Gamma Rhythms in Networks of Interneurons and Pyramidal Cells , 1997, Journal of Computational Neuroscience.

[24]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[25]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[26]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[27]  J. Schoffelen,et al.  Neuronal Coherence as a Mechanism of Effective Corticospinal Interaction , 2005, Science.

[28]  N. Crone,et al.  High-frequency gamma oscillations and human brain mapping with electrocorticography. , 2006, Progress in brain research.

[29]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[30]  W. Newsome,et al.  Local Field Potential in Cortical Area MT: Stimulus Tuning and Behavioral Correlations , 2006, The Journal of Neuroscience.

[31]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[32]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[33]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[34]  O. Jensen,et al.  Cross-frequency coupling between neuronal oscillations , 2007, Trends in Cognitive Sciences.

[35]  Rajesh P. N. Rao,et al.  Spectral Changes in Cortical Surface Potentials during Motor Movement , 2007, The Journal of Neuroscience.

[36]  A. Engel,et al.  Attention to Painful Stimulation Enhances γ-Band Activity and Synchronization in Human Sensorimotor Cortex , 2007, The Journal of Neuroscience.

[37]  G. Karmos,et al.  Entrainment of Neuronal Oscillations as a Mechanism of Attentional Selection , 2008, Science.

[38]  N. Logothetis,et al.  Phase-of-Firing Coding of Natural Visual Stimuli in Primary Visual Cortex , 2008, Current Biology.

[39]  Robert T. Knight,et al.  Five-dimensional neuroimaging: Localization of the time–frequency dynamics of cortical activity , 2008, NeuroImage.

[40]  E. Niebur,et al.  Neural Correlates of High-Gamma Oscillations (60–200 Hz) in Macaque Local Field Potentials and Their Potential Implications in Electrocorticography , 2008, The Journal of Neuroscience.

[41]  Arthur Gretton,et al.  Low-Frequency Local Field Potentials and Spikes in Primary Visual Cortex Convey Independent Visual Information , 2008, The Journal of Neuroscience.

[42]  A. Thiele,et al.  Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1 , 2008, The European journal of neuroscience.

[43]  Alexander S. Ecker,et al.  Comparing the Feature Selectivity of the Gamma-Band of the Local Field Potential and the Underlying Spiking Activity in Primate Visual Cortex , 2008, Frontiers in systems neuroscience.

[44]  I. Nelken,et al.  Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades , 2008, Neuron.

[45]  Ernst Niebur,et al.  Effect of Stimulus Intensity on the Spike–Local Field Potential Relationship in the Secondary Somatosensory Cortex , 2008, The Journal of Neuroscience.

[46]  Arthur Gretton,et al.  Inferring spike trains from local field potentials. , 2008, Journal of neurophysiology.

[47]  M. Carandini,et al.  Local Origin of Field Potentials in Visual Cortex , 2009, Neuron.

[48]  C. Schroeder,et al.  Low-frequency neuronal oscillations as instruments of sensory selection , 2009, Trends in Neurosciences.

[49]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[50]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[51]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[52]  M. Scanziani,et al.  Instantaneous Modulation of Gamma Oscillation Frequency by Balancing Excitation with Inhibition , 2009, Neuron.

[53]  N. Logothetis,et al.  Frequency-Band Coupling in Surface EEG Reflects Spiking Activity in Monkey Visual Cortex , 2009, Neuron.

[54]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[55]  Christopher C. Pack,et al.  Pattern Motion Selectivity of Spiking Outputs and Local Field Potentials in Macaque Visual Cortex , 2009, The Journal of Neuroscience.

[56]  R. Shapley,et al.  Spatial Spread of the Local Field Potential and its Laminar Variation in Visual Cortex , 2009, The Journal of Neuroscience.

[57]  W. Singer,et al.  Synchronization Dynamics in Response to Plaid Stimuli in Monkey V1 , 2009, Cerebral cortex.

[58]  Biyu J. He,et al.  The Temporal Structures and Functional Significance of Scale-free Brain Activity , 2010, Neuron.

[59]  Stefano Panzeri,et al.  Sensory information in local field potentials and spikes from visual and auditory cortices: time scales and frequency bands , 2010, Journal of Computational Neuroscience.

[60]  J. Maunsell,et al.  Differences in Gamma Frequencies across Visual Cortex Restrict Their Possible Use in Computation , 2010, Neuron.

[61]  Fiona E. N. LeBeau,et al.  Multiple origins of the cortical gamma rhythm , 2011, Developmental neurobiology.