The improvement of crack propagation modelling in triangular 2D structures using the extended finite element method

In this paper, a novel geometric method combined with the piecewise linear function method is introduced into the extended finite element method (XFEM) to determine the crack tip element and crack surface element. Then, by combining with the advanced mesh technique, a novel method is proposed to improve the modelling of crack propagation in triangular 2D structure with the XFEM. The numerical tests show that the accuracy, the convergence, and the stability of the XFEM can be improved using the proposed method. Moreover, the applicability of the conventional multiple enrichment scheme is discussed. Compared with the proposed method, the conventional multiple enrichment scheme has deficiency in mixed mode I and II crack. Finally, a comparative study shows that the performance of the XFEM by using the proposed method to model the crack propagation can be greatly improved.

[1]  A. Huespe,et al.  A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM , 2006 .

[2]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[3]  Jonas Koko,et al.  A Matlab mesh generator for the two-dimensional finite element method , 2015, Appl. Math. Comput..

[4]  Glaucio H. Paulino,et al.  Some basic formulations of the virtual element method (VEM) for finite deformations , 2017 .

[5]  G. Meschke,et al.  Energy-based modeling of cohesive and cohesionless cracks via X-FEM , 2007 .

[6]  Mo Li,et al.  An improved texture-related vertex clustering algorithm for model simplification , 2015, Computational Geosciences.

[7]  Jacob Fish,et al.  Adaptive and hierarchical modelling of fatigue crack propagation , 1993 .

[8]  He Liu,et al.  An XFEM-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures , 2017 .

[9]  Ted Belytschko,et al.  Modelling crack growth by level sets in the extended finite element method , 2001 .

[10]  B. K. Mishra,et al.  A new multiscale XFEM for the elastic properties evaluation of heterogeneous materials , 2017 .

[11]  E. Camponogara,et al.  Models and Algorithms for Optimal Piecewise-Linear Function Approximation , 2015 .

[12]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .

[13]  Xiaoping Zhou,et al.  A multi-dimensional space method for dynamic cracks problems using implicit time scheme in the framework of the extended finite element method , 2015 .

[14]  Erik Schlangen,et al.  Experimental and numerical analysis of micromechanisms of fracture of cement-based composites , 1992 .

[15]  A. Caggiano,et al.  Mesoscale fracture of a bearing steel: A discrete crack approach on static and quenching problems , 2017 .

[16]  Stéphane Bordas,et al.  An extended finite element library , 2007 .

[17]  T. Belytschko,et al.  A method for multiple crack growth in brittle materials without remeshing , 2004 .

[18]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[19]  Rouzegar Jafar Extended Finite Element Method , 2015 .

[20]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[21]  T. Belytschko,et al.  A review of extended/generalized finite element methods for material modeling , 2009 .

[22]  Bhushan Lal Karihaloo,et al.  Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery , 2006 .

[23]  Patrick Laborde,et al.  Crack tip enrichment in the XFEM using a cutoff function , 2008 .

[24]  A. Caggiano,et al.  Virtual elements and zero thickness interface-based approach for fracture analysis of heterogeneous materials , 2018, Computer Methods in Applied Mechanics and Engineering.

[25]  Timon Rabczuk,et al.  Modeling and simulation of kinked cracks by virtual node XFEM , 2015 .

[26]  Bijay K. Mishra,et al.  New enrichments in XFEM to model dynamic crack response of 2-D elastic solids , 2016 .

[27]  Stefano Mariani,et al.  Extended finite element method for quasi‐brittle fracture , 2003 .

[28]  Peter Wriggers,et al.  An XFEM approach for modelling delamination in composite laminates , 2016 .

[29]  R. de Borst,et al.  A partition‐of‐unity‐based finite element method for level sets , 2008 .

[30]  Susumu Kono,et al.  Mixed mode fracture of concrete , 1995 .

[31]  Bhushan Lal Karihaloo,et al.  XFEM for direct evaluation of mixed mode SIFs in homogeneous and bi‐materials , 2004 .

[32]  Amjad Rehman,et al.  An Intelligent Fused Approach for Face Recognition , 2013, J. Intell. Syst..

[33]  Xiaoping Zhou,et al.  Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses , 2012 .

[34]  Surendra P. Shah,et al.  Fracture of Concrete Subjected to Impact Loading , 1986 .

[35]  David L. Chopp,et al.  Modeling thermal fatigue cracking in integrated circuits by level sets and the extended finite element method , 2003 .

[36]  D. A. Field Qualitative measures for initial meshes , 2000 .

[37]  Michel Salaün,et al.  High‐order extended finite element method for cracked domains , 2005 .

[38]  Rong Tian,et al.  Improved XFEM: Accurate and robust dynamic crack growth simulation , 2016 .

[39]  T. Belytschko,et al.  Vector level sets for description of propagating cracks in finite elements , 2003 .

[40]  P. Bouchard,et al.  Numerical modelling of crack propagation: automatic remeshing and comparison of different criteria , 2003 .

[41]  M. Ripani,et al.  Meso-scale response of concrete under high temperature based on coupled thermo-mechanical and pore-pressure interface modeling , 2018 .