Relationships between forest variables and remote sensing data in a Nothofagus pumilio forest

The use of remote sensing data is an alternative approach to extrapolate forest variables measured in the field over large and inaccessible forested areas. The objective of this study was to investigate the relationship between forest variables and four remotely sensed vegetation parameters (simple ratio, SR; normalized difference vegetation index, NDVI; green normalized difference vegetation index, GNDVI; vegetation cover fraction, VCF) in a Nothofagus pumilio forest. Forest variables were measured in the Magellan Region of Chile and vegetation parameters were retrieved from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image of the study area. An accuracy comparison of regression equations showed that the models that used the VCF together with the SR had the best performances of the basal area [R 2 0.72], stem biomass (R 2 0.66], and aboveground tree biomass (AGTB) [R 2 0.73]. This study concludes that the regressions developed could be successfully used to estimate AGTB and carbon storage for the Nothofagus pumilio forest in the Magellan Region.

[1]  R. Allen,et al.  Carbon storage along a stand development sequence in a New Zealand Nothofagus forest , 2003 .

[2]  Janne Heiskanen,et al.  Estimating biomass for boreal forests using ASTER satellite data combined with standwise forest inventory data , 2005 .

[3]  Philip J. Howarth,et al.  Hyperspectral remote sensing for estimating biophysical parameters of forest ecosystems , 1999 .

[4]  John B. Adams,et al.  Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon , 1995 .

[5]  Simone R. Freitas,et al.  Relationships between forest structure and vegetation indices in Atlantic Rainforest , 2005 .

[6]  R. Tateishi,et al.  Relationships between percent vegetation cover and vegetation indices , 1998 .

[7]  S. T. Gower,et al.  Leaf area index of boreal forests: theory, techniques, and measurements , 1997 .

[8]  Rodolfo Gajardo La vegetación natural de Chile : clasificación y distribución geográfica , 1994 .

[9]  J. Rogan,et al.  Mapping burn severity in southern California using spectral mixture analysis , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[10]  A. Schulte,et al.  Possible Effects of Altered Growth Behaviour of Norway Spruce (Picea abies) on Carbon Accounting , 2002 .

[11]  J. Heiskanen Estimating aboveground tree biomass and leaf area index in a mountain birch forest using ASTER satellite data , 2006 .

[12]  Marguerite Madden,et al.  A linear mixed-effects model of biomass and volume of trees using Landsat ETM+ images , 2007 .

[13]  Richard H. Waring,et al.  Forest Ecosystems: Concepts and Management , 1985 .

[14]  S. Franklin,et al.  Remote sensing of forest environments : concepts and case studies , 2003 .

[15]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[16]  Michael A. Wulder,et al.  Remote Sensing of Forest Environments, Introduction , 2003 .

[17]  María Vanessa Lencinas,et al.  Forty years of silvicultural management in southern Nothofagus pumilio primary forests , 2004 .

[18]  T. M. Lillesand,et al.  Estimating the leaf area index of North Central Wisconsin forests using the landsat thematic mapper , 1997 .

[19]  A. Schulte,et al.  Soil organic C as affected by silvicultural and exploitative interventions in Nothofagus pumilio forests of the Chilean Patagonia , 2008 .

[20]  Min Zhao,et al.  Estimating net primary productivity of Chinese pine forests based on forest inventory data , 2006 .

[21]  Yoram J. Kaufman,et al.  MODIS NDVI Optimization To Fit the AVHRR Data Series—Spectral Considerations , 1998 .

[22]  R. Navarro-Cerrillo,et al.  Aboveground biomass in Prosopis pallida (Humb. and Bonpl. ex Willd.) H. B. K. ecosystems using Landsat 7 ETM+ images , 2007 .

[23]  B. Parresol Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons , 1999, Forest Science.

[24]  R. Hall,et al.  Modeling forest stand structure attributes using Landsat ETM+ data: Application to mapping of aboveground biomass and stand volume , 2006 .

[25]  Susan J. Riha,et al.  Biomass, harvestable area, and forest structure estimated from commercial timber inventories and remotely sensed imagery in southern Amazonia , 2006 .

[26]  Warren B. Cohen,et al.  Carbon Stores, Sinks, and Sources in Forests of Northwestern Russia: Can We Reconcile Forest Inventories with Remote Sensing Results? , 2004 .

[27]  A. Gitelson,et al.  Novel algorithms for remote estimation of vegetation fraction , 2002 .

[28]  D. Sheil,et al.  Assessing forest canopies and understorey illumination: canopy closure, canopy cover and other measures , 1999 .

[29]  J. M. Rosenfeld,et al.  Regeneration of Nothofagus pumilio [Poepp. et Endl.] Krasser forests after five years of seed tree cutting. , 2006, Journal of environmental management.

[30]  Yasushi Yamaguchi,et al.  Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) , 1998, IEEE Trans. Geosci. Remote. Sens..

[31]  C. Peng,et al.  Changes in Forest Biomass Carbon Storage in China Between 1949 and 1998 , 2001, Science.

[32]  R. Allen,et al.  Biomass and macro-nutrients (above- and below-ground) in a New Zealand beech (Nothofagus) forest ecosystem: implications for carbon storage and sustainable forest management , 2003 .

[33]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[34]  R. Fournier,et al.  A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland , 2006 .

[35]  Maurizio Mencuccini,et al.  Aboveground biomass relationships for beech (Fagus moesiaca Cz.) trees in Vermio Mountain, Northern Greece, and generalised equations for Fagus sp. , 2003 .

[36]  Tiit Nilson,et al.  Age dependence of forest reflectance: Analysis of main driving factors , 1994 .

[37]  S. Leblanc,et al.  Derivation and validation of Canada-wide coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements , 2002 .

[38]  A. Schulte,et al.  Allometric above-belowground biomass equations for Nothofagus pumilio (Poepp. & Endl.) natural regeneration in the Chilean Patagonia , 2009, Annals of Forest Science.

[39]  F. Valladares,et al.  Canopy structure and spatial heterogeneity of understory light in an abandoned Holm oak woodland , 2006 .

[40]  JASON R. ROXBURGH,et al.  USES AND LIMITATIONS OF HEMISPHERICAL PHOTOGRAPHY FOR ESTIMATING FOREST LIGHT ENVIRONMENTS , 2004 .

[41]  Toshinori Kojima,et al.  Stand biomass estimation method by canopy coverage for application to remote sensing in an arid area of Western Australia , 2006 .

[42]  T. M. Lillesand,et al.  Remote Sensing and Image Interpretation , 1980 .

[43]  Thomas R. Crow,et al.  Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA , 2004 .

[44]  Thomas T. Veblen,et al.  Structure and tree‐fall gap dynamics of old‐growth Nothofagus forests in Tierra del Fuego, Argentina , 1993 .

[45]  C. Collet,et al.  Using competition and light estimates to predict diameter and height growth of naturally regenerated beech seedlings growing under changing canopy conditions , 2006 .

[46]  Louis R. Iverson,et al.  Applications of satellite remote sensing to forested ecosystems , 1989, Landscape Ecology.

[47]  A. Gitelson,et al.  Remote estimation of chlorophyll content in higher plant leaves , 1997 .

[48]  P. Mausel,et al.  Application of spectral mixture analysis to Amazonian land-use and land-cover classification , 2004 .

[49]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[50]  C. D. Zegers Bosques templados de Chile y Argentina : variación, estructura y dinámica , 1995 .

[51]  Carmen Luz de la Maza La Vegetación Natural de Chile , 2010 .

[52]  J. D. Lencinas,et al.  Carbon Reservoirs in Temperate South American Nothofagus Forests , 2002, TheScientificWorldJournal.

[53]  Daniel G. Cole Remote Sensing for GIS Managers , 2007 .

[54]  Daniel G. Brown A Spectral Unmixing Approach to Leaf Area Index (LAI) Estimation at the Alpine Treeline Ecotone , 2001 .

[55]  J. Ardö,et al.  Investigating the use of Landsat thematic mapper data for estimation of forest leaf area index in southern Sweden , 2003 .

[56]  Steven E. Franklin,et al.  Remote Sensing of Forest Environments , 2003, Springer US.

[57]  Kaj Andersson,et al.  A new methodology for the estimation of biomass of coniferdominated boreal forest using NOAA AVHRR data , 1997 .

[58]  M. Cochrane Linear mixture model classification of burned forests in the Eastern Amazon , 1998 .

[59]  R. Birdsey,et al.  National-Scale Biomass Estimators for United States Tree Species , 2003, Forest Science.