Multi-omics comparison of malignant and normal uveal melanocytes reveals molecular features of uveal melanoma

[1]  Gary D Bader,et al.  The reactome pathway knowledgebase 2022 , 2021, Nucleic Acids Res..

[2]  Peter H. L. Krijger,et al.  Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression. , 2021, Molecular cell.

[3]  S. Ceri,et al.  Systematic inference and comparison of multi-scale chromatin sub-compartments connects spatial organization to cell phenotypes , 2021, Nature Communications.

[4]  Xiao-yan Xie,et al.  KMT2A/C mutations function as a potential predictive biomarker for immunotherapy in solid tumors , 2020, Biomarker research.

[5]  B. Bastian,et al.  Functional characterization of uveal melanoma oncogenes , 2020, Oncogene.

[6]  M. Fenech,et al.  Telomere and Centromere Staining Followed by M-FISH Improves Diagnosis of Chromosomal Instability and Its Clinical Utility , 2020, Genes.

[7]  H. Fan,et al.  Long noncoding RNA TRPM2-AS acts as a microRNA sponge of miR-612 to promote gastric cancer progression and radioresistance , 2020, Oncogenesis.

[8]  Hao Wu,et al.  Differential methylation analysis for bisulfite sequencing using DSS , 2019, Quantitative Biology.

[9]  Ya-nan Sun,et al.  Long noncoding RNA HAGLR acts as a microRNA‐143‐5p sponge to regulate epithelial‐mesenchymal transition and metastatic potential in esophageal cancer by regulating LAMP3 , 2019, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[10]  O. Mariani,et al.  Evolutionary Routes in Metastatic Uveal Melanomas Depend on MBD4 Alterations , 2019, Clinical Cancer Research.

[11]  William Stafford Noble,et al.  Integrative detection and analysis of structural variation in cancer genomes , 2018, Nature Genetics.

[12]  Alexandros Kouris,et al.  VarSome: the human genomic variant search engine , 2018, bioRxiv.

[13]  A. Bennaceur-Griscelli,et al.  The Transition between Telomerase and ALT Mechanisms in Hodgkin Lymphoma and Its Predictive Value in Clinical Outcomes , 2018, Cancers.

[14]  A. Shoushtari,et al.  GNA11 Q209L Mouse Model Reveals RasGRP3 as an Essential Signaling Node in Uveal Melanoma , 2018, Cell reports.

[15]  P. Agrawal,et al.  HumCFS: a database of fragile sites in human chromosomes , 2017, bioRxiv.

[16]  J. Michael Cherry,et al.  The Encyclopedia of DNA elements (ENCODE): data portal update , 2017, Nucleic Acids Res..

[17]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[18]  Joshua M. Stuart,et al.  Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma. , 2018, Cancer cell.

[19]  Emmanuel Barillot,et al.  Effective normalization for copy number variation in Hi-C data , 2017, BMC Bioinformatics.

[20]  Michael P. Schroeder,et al.  Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations , 2017, Genome Medicine.

[21]  B. Bastian,et al.  RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma. , 2017, Cancer cell.

[22]  G. Massonnet,et al.  Nanobodies against surface biomarkers enable the analysis of tumor genetic heterogeneity in uveal melanoma patient‐derived xenografts , 2017, Pigment cell & melanoma research.

[23]  Richard D Carvajal,et al.  Uveal melanoma: epidemiology, etiology, and treatment of primary disease , 2017, Clinical ophthalmology.

[24]  Nicolò Riggi,et al.  Comprehensive Genetic Landscape of Uveal Melanoma by Whole-Genome Sequencing. , 2016, American journal of human genetics.

[25]  Sander R. Dubovy,et al.  Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis). , 2016, Transactions of the American Ophthalmological Society.

[26]  Michael A. Durante,et al.  Epigenetic reprogramming and aberrant expression of PRAME are associated with increased metastatic risk in Class 1 and Class 2 uveal melanomas , 2016, Oncotarget.

[27]  L. Mirny,et al.  Formation of Chromosomal Domains in Interphase by Loop Extrusion , 2015, bioRxiv.

[28]  A. de Klein,et al.  Uveal Melanomas with SF3B1 Mutations: A Distinct Subclass Associated with Late-Onset Metastases. , 2016, Ophthalmology.

[29]  B. Taylor,et al.  Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma , 2016, Nature Genetics.

[30]  Stefan Kurtenbach,et al.  PRAME as an Independent Biomarker for Metastasis in Uveal Melanoma , 2016, Clinical Cancer Research.

[31]  S. Roman-Roman,et al.  Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage , 2016, Nature Communications.

[32]  N. Hayward,et al.  Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4 , 2015, Oncotarget.

[33]  Jean-Philippe Vert,et al.  HiC-Pro: an optimized and flexible pipeline for Hi-C data processing , 2015, Genome Biology.

[34]  J. Dekker,et al.  Condensin-Driven Remodeling of X-Chromosome Topology during Dosage Compensation , 2015, Nature.

[35]  Neva C. Durand,et al.  A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping , 2014, Cell.

[36]  Bruno Colicchio,et al.  New tool for biological dosimetry: reevaluation and automation of the gold standard method following telomere and centromere staining. , 2014, Mutation research.

[37]  A. Nicolas,et al.  Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target , 2014, Molecular oncology.

[38]  Michael Morse,et al.  Multiple knockout mouse models reveal lincRNAs are required for life and brain development , 2013, eLife.

[39]  L. Desjardins,et al.  Genome-wide profiling is a clinically relevant and affordable prognostic test in posterior uveal melanoma , 2013, British Journal of Ophthalmology.

[40]  A. Hinnebusch,et al.  Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3 , 2013, Nature Genetics.

[41]  E. Barillot,et al.  Patient‐derived xenografts recapitulate molecular features of human uveal melanomas , 2013, Molecular Oncology.

[42]  M. Sitbon,et al.  Optimization of tumor xenograft dissociation for the profiling of cell surface markers and nutrient transporters , 2013, Laboratory Investigation.

[43]  A. Bowcock,et al.  Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma , 2013, Nature Genetics.

[44]  P. Kwok,et al.  Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly , 2012, Nature Biotechnology.

[45]  Raymond K. Auerbach,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[46]  L. Gallagher,et al.  CNVs leading to fusion transcripts in individuals with autism spectrum disorder , 2012, European Journal of Human Genetics.

[47]  N. Naus,et al.  Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. , 2012, Investigative ophthalmology & visual science.

[48]  J. Sedat,et al.  Spatial partitioning of the regulatory landscape of the X-inactivation centre , 2012, Nature.

[49]  S. Woodman,et al.  Genetic and molecular characterization of uveal melanoma cell lines , 2012, Pigment cell & melanoma research.

[50]  A. Bowcock,et al.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas , 2010, Science.

[51]  J. O'Brien,et al.  Mutations in GNA11 in uveal melanoma. , 2010, The New England journal of medicine.

[52]  E. Barillot,et al.  Establishment and Characterization of a Panel of Human Uveal Melanoma Xenografts Derived from Primary and/or Metastatic Tumors , 2010, Clinical Cancer Research.

[53]  E. Simpson,et al.  Frequent somatic mutations of GNAQ in uveal melanoma and blue nevi , 2008, Nature.

[54]  A. Bosserhoff,et al.  Identification of novel sense and antisense transcription at the TRPM2 locus in cancer , 2008, Cell Research.

[55]  L. Gudas,et al.  Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta(2), and Cyp26A1 in F9 embryonal carcinoma cells. , 2007, Journal of molecular biology.

[56]  H. Saluz,et al.  Hypomethylation of PRAME is responsible for its aberrant overexpression in human malignancies , 2007, Genes, chromosomes & cancer.

[57]  M. Ehrlich,et al.  The 5-methylcytosine content of DNA from human tumors. , 1983, Nucleic acids research.

[58]  A. Feinberg,et al.  Hypomethylation distinguishes genes of some human cancers from their normal counterparts , 1983, Nature.

[59]  E. Bonnet,et al.  Whole-Genome Bisulfite Sequencing for the Analysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution. , 2018, Methods in molecular biology.

[60]  Alex Hastie,et al.  Structural Variation Detection and Analysis Using Bionano Optical Mapping. , 2018, Methods in molecular biology.

[61]  Sébastien Tempel Using and understanding RepeatMasker. , 2012, Methods in molecular biology.

[62]  I. Amit,et al.  Comprehensive mapping of long-range interactions reveals folding principles of the human genome. , 2009, Science.