Improved idler beam quality via simultaneous parametric oscillation and signal-to-idler conversion.

We report on an improvement of idler beam quality in a singly resonant optical parametric oscillator (OPO), where the resonant signal is converted to the idler via an additional difference frequency generation (DFG) process. The two processes are phase matched simultaneously by a quasi-periodically poled nonlinear crystal. Whereas back-conversion of the signal and idler to the pump frequency distorts the idler beam in a standard OPO, in a quasi-periodic OPO the DFG process reduces the signal intensity, leading to suppression of back-conversion and, hence, improvement in idler beam quality. Indeed, the experimental results show under the same pump power a significant improvement in idler beam quality for the quasi-periodic OPO (1≤M2≤2.1) as compared with the standard OPO (3.2≤M2≤5.3).

[1]  A. Arie,et al.  Photonic quasicrystals for nonlinear optical frequency conversion. , 2004, Physical review letters.

[2]  Gerald T. Moore,et al.  Optical parametric oscillation with intracavity difference-frequency mixing , 1995 .

[3]  M. Raybaut,et al.  Tunable mid-infrared optical parametric oscillator with intracavity parametric amplification based on a dual-grating PPLN crystal , 2012 .

[4]  Ady Arie,et al.  Improving the efficiency of an optical parametric oscillator by tailoring the pump pulse shape. , 2010, Optics express.

[5]  Mark S. Bowers,et al.  Image-rotating cavity designs for improved beam quality in nanosecond optical parametric oscillators , 2001 .

[6]  Tao Chen,et al.  High Power Efficient 3.81 $\mu{\rm m}$ Emission From a Fiber Laser Pumped Aperiodically Poled Cascaded Lithium Niobate , 2013, IEEE Photonics Technology Letters.

[7]  M. R. Shenoy,et al.  Multiple-wavelength quasi-phase-matching for efficient idler generation in MgO:LiNbO3 based nanosecond optical parametric oscillator. , 2012, Applied optics.

[8]  Ady Arie,et al.  Simultaneous parametric oscillation and signal-to-idler conversion for efficient downconversion. , 2010, Optics letters.

[9]  R. Wallenstein,et al.  Reduction of the spectral width and beam divergence of a BBO-OPO by using collinear type-II phase matching and back reflection of the pump beam , 2001 .

[10]  Mark S. Bowers,et al.  Comparison of a numerical model with measured performance of a seeded, nanosecond KTP optical parametric oscillator , 1995 .

[11]  R. Wallenstein,et al.  Numerical analysis of the spatial behaviour of nanosecond optical parametric oscillators of beta-barium borate , 2000 .

[12]  D. Armstrong,et al.  Demonstration of improved beam quality in an image-rotating optical parametric oscillator. , 2002, Optics letters.

[13]  R. T. Smith,et al.  Thermal Expansion of Lithium Tantalate and Lithium Niobate Single Crystals , 1969 .

[14]  Takashi Kondo,et al.  Absolute scale of second-order nonlinear-optical coefficients , 1997 .

[15]  S. Rosenwaks,et al.  Nearly diffraction-limited signal generated by a lower beam-quality pump in an optical parametric oscillator. , 2003, Applied optics.

[16]  Nai-Ben Ming,et al.  Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice , 1997 .

[17]  G T Moore,et al.  Greater than 100% photon-conversion efficiency from an optical parametric oscillator with intracavity difference-frequency mixing. , 1998, Optics letters.

[18]  R. C. Miller OPTICAL SECOND HARMONIC GENERATION IN PIEZOELECTRIC CRYSTALS , 1964 .

[19]  D. Reid,et al.  Idler-resonant femtosecond tandem optical parametric oscillator tuning from 2.1 μm to 4.2 μm , 2004 .

[20]  Ady Arie,et al.  Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3 , 2008 .

[21]  M. Yamada,et al.  First‐order quasi‐phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second‐harmonic generation , 1993 .

[22]  Mark S. Bowers,et al.  Numerical models of broad-bandwidth nanosecond optical parametric oscillators , 1999 .