Computational framework for long-term reliability analysis of RC structures

In many engineering fields, durability aspects with damage-oriented structural assessments recently have gained increasing interest. Thus new demands both for theoretical developments and analysis concepts are required. Because of their complexity, previous published researches hereby often have followed some aspects very accurately, while others were oversimplified. The present contribution proposes a rational computational concept for long-term reliability of RC structures. It is based on a novel combination of nonlinear damage analysis with efficient probabilistic reliability estimations, balancing mechanical modelling, analysis and stochastic aspects with acceptable computing time. Thereby, new 3D models for short-time behavior and for fatigue of concrete are applied. A time-variant reliability study of a RC bridge column with respect to stability failure under fatigue conditions demonstrates the general applicability of the derived strategy.

[1]  Herbert A. Mang,et al.  Computational Mechanics of Reinforced Concrete Structures , 1995 .

[2]  Wilfried B. Krätzig,et al.  Reliability of reinforced concrete structures under fatigue , 2002, Reliab. Eng. Syst. Saf..

[3]  L. Faravelli Response‐Surface Approach for Reliability Analysis , 1989 .

[4]  Sanjay Govindjee,et al.  Anisotropic modelling and numerical simulation of brittle damage in concrete , 1995 .

[5]  M. Shinozuka Basic Analysis of Structural Safety , 1983 .

[6]  Helmut J. Pradlwarter,et al.  Efficient computational procedures for reliability estimates of MDOF-systems , 1991 .

[7]  Robert E. Melchers,et al.  RELIABILITY OF DETERIORATING RC SLAB BRIDGES , 1997 .

[8]  E. Vanmarcke On the Distribution of the First-Passage Time for Normal Stationary Random Processes , 1975 .

[9]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[10]  J. Mier Fracture Processes of Concrete , 1997 .

[11]  J. Holmén Fatigue of Concrete by Constant and Variable Amplitude loading , 1982 .

[12]  Wilfried B. Krätzig,et al.  Measures of structural damage for global failure analysis , 2000 .

[13]  Wai-Fah Chen Plasticity in reinforced concrete , 1982 .

[14]  R. Gilbert,et al.  Tension Stiffening in Reinforced Concrete Slabs , 1978 .

[15]  Asko Sarja,et al.  Durability design of concrete structures : report of RILEM Technical Committee 130-CSL , 1996 .

[16]  B. Sinha,et al.  STRESS - STRAIN RELATIONS FOR CONCRETE UNDER CYCLIC LOADING , 1964 .

[17]  Dan M. Frangopol,et al.  Life-cycle performance of deteriorating structures : assessment, design, and management , 2003 .

[18]  Z. Bažant,et al.  Plastic-Fracturing Theory for Concrete , 1979 .

[19]  Roman Lackner,et al.  An anisotropic elastoplastic‐damage model for plain concrete , 1998 .

[20]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[21]  Michael P. Enright,et al.  Service-Life Prediction of Deteriorating Concrete Bridges , 1998 .

[22]  Mark G. Stewart,et al.  Time-dependent reliability of deteriorating reinforced concrete bridge decks , 1998 .

[23]  Bruce R. Ellingwood,et al.  Reliability of Reinforced-Concrete Cylindrical Shells , 1995 .

[24]  M. D. Stefano,et al.  Efficient algorithm for second-order reliability analysis , 1991 .

[25]  Larry W. Masters,et al.  Service life prediction , 1987 .

[26]  W. Krätzig,et al.  An elasto-plastic damage model for reinforced concrete with minimum number of material parameters , 2004 .

[27]  Ton Vrouwenvelder,et al.  The JCSS probabilistic model code , 1997 .

[28]  Michael Ortiz,et al.  A constitutive theory for the inelastic behavior of concrete , 1985 .

[29]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[30]  Dimitri V. Val,et al.  Reliability evaluation in nonlinear analysis of reinforced concrete structures , 1997 .

[31]  Dirk Roos Approximation und Interpolation von Grenzzustandsfunktionen zur Sicherheitsbewertung nichtlinearer Finite-Elemente-Strukturen , 2002 .

[32]  Wilfried B. Krätzig,et al.  Multi-layer multi-director concepts for D-adaptivity in shell theory , 2002 .

[33]  C. Bucher,et al.  On Efficient Computational Schemes to Calculate Structural Failure Probabilities , 1989 .

[34]  J. Dougill,et al.  On stable progressively fracturing solids , 1976 .

[35]  Aleš Florian,et al.  An efficient sampling scheme: Updated Latin Hypercube Sampling , 1992 .

[36]  Manfred Keuser,et al.  Finite Element Models for Bond Problems , 1987 .

[37]  H. Schreyer,et al.  An anisotropic damage model with dilatation for concrete , 1988 .

[38]  P. Feenstra Computational aspects of biaxial stress in plain and reinforced concrete : proefschrift , 1993 .

[39]  Dan M. Frangopol,et al.  Probabilistic FEM for Nonlinear Concrete Structures. I: Theory , 1991 .

[40]  Yannis F. Dafalias,et al.  Plastic Internal Variables Formalism of Cyclic Plasticity , 1976 .

[41]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[42]  Bruce R. Ellingwood,et al.  Reliability-Based Service-Life Assessment of Aging Concrete Structures , 1993 .

[43]  T. Hsu Fatigue of Plain Concrete , 1981 .

[44]  C. Bucher,et al.  A fast and efficient response surface approach for structural reliability problems , 1990 .

[45]  B. Oh FATIGUE-LIFE DISTRIBUTIONS OF CONCRETE FOR VARIOUS STRESS LEVELS , 1991 .

[46]  P. H. Feenstra,et al.  Constitutive Model for Reinforced Concrete , 1995 .

[47]  Mark G. Stewart,et al.  Serviceability Reliability Analysis of Reinforced Concrete Structures , 1996 .

[48]  J. Z. Zhu,et al.  The finite element method , 1977 .

[49]  J. C. Simo,et al.  Strain- and stress-based continuum damage models—I. Formulation , 1987 .

[50]  Y. K. Wen,et al.  On Fast Integration for Time Variant Structural Reliability , 1987 .

[51]  H. Hilsdorf,et al.  Strength and Deformation Characteristics of Plain Concrete Subjected to High Repeated and Sustained Loads , 1971 .