DNA base stacking: The stacked uracil/uracil and thymine/thymine minima

The potential energy surfaces of stacked uracil dimer (U/U) and stacked thymine dimer (T/T) have been explored at the counterpoise (CP)‐corrected M06‐2X/6‐31+G(d) level of theory, in the gas phase and in solution (with water and, for U/U, 1,4‐dioxane as the solvents) modeled by a continuum solvent using the polarizable continuum model. Potential energy scans were created by rotation of one monomer around its center‐of‐mass, whereas the other monomer remained still. Both face‐to‐back (one molecule exactly on top of the other) and face‐to‐face (one base molecule flipped by 180°) structures were considered. Five or six (dependent on whether CP correction is included or not) stacked uracil dimer minima and six stacked thymine dimer minima were located. A number of transition states on the U/U and T/T potential energy surfaces were likewise identified. The general effect of the continuum solvent is a flattening of the potential energy surface. Comparison of the gas‐phase M06‐2X/6‐31+G(d) U/U interaction energies with estimated CCSD(T)/complete basis set values (where available) show the excellent performance of this functional for stacking energies. © 2012 Wiley Periodicals, Inc.

[1]  A study of nucleic acid base-stacking by the Monte Carlo method: Extended cluster approach , 2011 .

[2]  Pavel Hobza,et al.  SIGNIFICANT STRUCTURAL DEFORMATION OF NUCLEIC ACID BASES IN STACKED BASE PAIRS : AN AB INITIO STUDY BEYOND HARTREE-FOCK , 1998 .

[3]  D. Truhlar,et al.  Applications and validations of the Minnesota density functionals , 2011 .

[4]  F. J. Luque,et al.  Nature of base stacking: reference quantum-chemical stacking energies in ten unique B-DNA base-pair steps. , 2006, Chemistry.

[5]  T. C. Lewis,et al.  The observed and energetically feasible crystal structures of 5-substituted uracils , 2008 .

[6]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[7]  Kevin E. Riley,et al.  Nature and magnitude of aromatic stacking of nucleic acid bases. , 2008, Physical chemistry chemical physics : PCCP.

[8]  Leo Frederick Holroyd,et al.  Insufficient description of dispersion in B3LYP and large basis set superposition errors in MP2 calculations can hide peptide conformers , 2007 .

[9]  Kevin E. Riley,et al.  Extensions of the S66 Data Set: More Accurate Interaction Energies and Angular-Displaced Nonequilibrium Geometries , 2011 .

[10]  J. Šponer,et al.  Uracil Dimer: Potential Energy and Free Energy Surfaces. Ab Initio beyond Hartree−Fock and Empirical Potential Studies , 1998 .

[11]  H. Heus,et al.  Structural features that give rise to the unusual stability of RNA hairpins containing GNRA loops. , 1991, Science.

[12]  Olga Kennard,et al.  Crystallographic evidence for the existence of CH.cntdot..cntdot..cntdot.O, CH.cntdot..cntdot..cntdot.N and CH.cntdot..cntdot..cntdot.Cl hydrogen bonds , 1982 .

[13]  H. Schaefer,et al.  Reply to ‘Comment on ‘To stack or not to stack: Performance of a new density functional for the uracil and thymine dimers’ [Chem. Phys. Lett. 459 (2008) 164]’ , 2009 .

[14]  Pavel Hobza,et al.  S66: A Well-balanced Database of Benchmark Interaction Energies Relevant to Biomolecular Structures , 2011, Journal of chemical theory and computation.

[15]  Konrad Patkowski,et al.  Improved interaction energy benchmarks for dimers of biological relevance. , 2010, Physical chemistry chemical physics : PCCP.

[16]  J. Šponer,et al.  Balance of Attraction and Repulsion in Nucleic-Acid Base Stacking: CCSD(T)/Complete-Basis-Set-Limit Calculations on Uracil Dimer and a Comparison with the Force-Field Description. , 2009, Journal of chemical theory and computation.

[17]  Stephen Neidle,et al.  Principles of nucleic acid structure , 2007 .

[18]  M. Frisch,et al.  Using redundant internal coordinates to optimize equilibrium geometries and transition states , 1996, J. Comput. Chem..

[19]  Pavel Hobza,et al.  Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  M. Vincent,et al.  Carbohydrate-aromatic pi interactions: a test of density functionals and the DFT-D method. , 2009, Physical chemistry chemical physics : PCCP.

[21]  T. van Mourik,et al.  Comparison of ab initio and DFT electronic structure methods for peptides containing an aromatic ring: effect of dispersion and BSSE. , 2007, The journal of physical chemistry. A.

[22]  T. Mourik Comment on Theoretical study of indole: Protonation, indolyl radical, tautomers of indole, and its interaction with water [Chem. Phys. 301 (2004) 61-79] , 2004 .

[23]  T. Tsukamoto,et al.  A DFT study of uracil and 5-bromouracil in nanodroplets , 2010 .

[24]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[25]  Modelling zwitterions in solution: 3-fluoro-γ-aminobutyric acid (3F-GABA). , 2012, Chemistry.

[26]  Hans-Joachim Werner,et al.  Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions. , 2008, Physical chemistry chemical physics : PCCP.

[27]  L. Sukhodub,et al.  Experimental studies of molecular interactions between nitrogen bases of nucleic acids , 1979, Biopolymers.

[28]  S. Grimme,et al.  "Mindless" DFT Benchmarking. , 2009, Journal of chemical theory and computation.

[29]  Edward G Hohenstein,et al.  Basis set consistent revision of the S22 test set of noncovalent interaction energies. , 2010, The Journal of chemical physics.

[30]  T. van Mourik,et al.  Complete conformational space of the potential HIV-1 reverse transcriptase inhibitors d4U and d4C. A quantum chemical study. , 2012, Physical chemistry chemical physics : PCCP.

[31]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[32]  K. Sillar,et al.  Synthesis, Conformation and Biological Evaluation of the Enantiomers of 3‐Fluoro‐γ‐Aminobutyric Acid ((R)‐ and (S)‐3F‐GABA): An Analogue of the Neurotransmitter GABA , 2007, Chembiochem : a European journal of chemical biology.

[33]  S. Chou,et al.  Cross-strand purine-pyrimidine stack and sheared purine.pyrimidine pairing in the human HIV-1 reverse transcriptase inhibitors. , 1999, Journal of molecular biology.

[34]  M. Ghomi,et al.  Ab initio comprehensive conformational analysis of 2'-deoxyuridine, the biologically significant DNA minor nucleoside, and reconstruction of its low-temperature matrix infrared spectrum. , 2008, The journal of physical chemistry. B.

[35]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[36]  A. Warshel,et al.  Thermodynamic Parameters for Stacking and Hydrogen Bonding of Nucleic Acid Bases in Aqueous Solution: Ab Initio/Langevin Dipoles Study , 1999 .

[37]  Vadim V. Demidov,et al.  Nucleic Acids: Structures, Properties and Functions , 2001 .

[38]  Roman O. Zhurakivsky,et al.  Intramolecular CH…O Hydrogen Bonds in the AI and BI DNA-like Conformers of Canonical Nucleosides and their Watson-Crick Pairs. Quantum Chemical and AIM Analysis , 2011, Journal of biomolecular structure & dynamics.

[39]  C. R. Calladine,et al.  Conformational characteristics of DNA: empirical classifications and a hypothesis for the conformational behaviour of dinucleotide steps , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  T. Mourik Comment on ‘To stack or not to stack: Performance of a new density functional for the uracil and thymine dimers’ [Chem. Phys. Lett. 459 (2008) 164] , 2009 .

[41]  Yan Zhao,et al.  Density Functionals for Noncovalent Interaction Energies of Biological Importance. , 2007, Journal of chemical theory and computation.

[42]  L. Bulavin,et al.  How Flexible are DNA Constituents? The Quantum-Mechanical Study , 2011, Journal of biomolecular structure & dynamics.

[43]  Uwe Koch,et al.  CHARACTERIZATION OF C-H-O HYDROGEN-BONDS ON THE BASIS OF THE CHARGE-DENSITY , 1995 .

[44]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[45]  M. Ghomi,et al.  The whole of intramolecular H-bonding in the isolated DNA nucleoside thymidine. AIM electron density topological study , 2007 .

[46]  Hannah R. Leverentz,et al.  Assessment of new meta and hybrid meta density functionals for predicting the geometry and binding energy of a challenging system: the dimer of H2S and benzene. , 2008, The journal of physical chemistry. A.

[47]  K. Watanabe,et al.  Most compact hairpin-turn structure exerted by a short DNA fragment, d(GCGAAGC) in solution: an extraordinarily stable structure resistant to nucleases and heat. , 1994, Nucleic acids research.

[48]  Lori A Burns,et al.  Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. , 2011, The Journal of chemical physics.

[49]  T. Tsukamoto,et al.  On the mechanism of the mutagenic action of 5-bromouracil: a DFT study of uracil and 5-bromouracil in a water cluster. , 2009, The journal of physical chemistry. A.

[50]  M. Frank-Kamenetskii,et al.  Base-stacking and base-pairing contributions into thermal stability of the DNA double helix , 2006, Nucleic acids research.

[51]  T. Mourik Assessment of Density Functionals for Intramolecular Dispersion-Rich Interactions. , 2008, Journal of chemical theory and computation.

[52]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[53]  G. Zon,et al.  NMR and molecular modeling evidence for a G.A mismatch base pair in a purine-rich DNA duplex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Pavel Hobza,et al.  On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level. , 2005, The Journal of chemical physics.

[55]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[56]  H. Schlegel,et al.  Combining Synchronous Transit and Quasi-Newton Methods to Find Transition States , 1993 .

[57]  Matthew L. Leininger,et al.  Accurate structures and binding energies for stacked uracil dimers , 2002 .

[58]  V. Danilov,et al.  The nature of base stacking: a Monte Carlo study , 2011 .

[59]  Jerzy Leszczynski,et al.  Stacking and H-bonding patterns of dGpdC and dGpdCpdG: Performance of the M05-2X and M06-2X Minnesota density functionals for the single strand DNA , 2011 .

[60]  Edward G Hohenstein,et al.  Assessment of the Performance of the M05-2X and M06-2X Exchange-Correlation Functionals for Noncovalent Interactions in Biomolecules. , 2008, Journal of chemical theory and computation.

[61]  Jerzy Leszczynski,et al.  To stack or not to stack: Performance of a new density functional for the uracil and thymine dimers , 2008 .