Is Naïve Bayes a Good Classifier for Document Classification

Document classification is a growing interest in the research of text mining. Correctly identifying the documents into particular category is still presenting challenge because of large and vast amount of features in the dataset. In regards to the existing classifying approaches, Naive Bayes is potentially good at serving as a document classification model due to its simplicity. The aim of this paper is to highlight the performance of employing Naive Bayes in document classification. Results show that Naive Bayes is the best classifiers against several common classifiers (such as decision tree, neural network, and support vector machines) in term of accuracy and computational efficiency.