Transient absorption microscopy of monolayer and bulk WSe2.

We present an experimental investigation on the exciton dynamics of monolayer and bulk WSe2 samples, both of which are studied by femtosecond transient absorption microscopy. Under the excitation of a 405 nm pump pulse, the differential reflection signal of a probe pulse (tuned to the A-exciton resonance) reaches a peak rapidly that indicates an ultrafast formation process of excitons. By resolving the differential reflection signal in both time and space, we directly determine the exciton lifetimes of 18±1 and 160±10 ps and the exciton diffusion coefficients of 15±5 and 9±3 cm2/s in the monolayer and bulk samples, respectively. From these values, we deduce other parameters characterizing the exciton dynamics such as the diffusion length, the mobility, the mean free path, and the mean free length. These fundamental parameters are useful for understanding the excitons in monolayer and bulk WSe2 and are important for applications in optoelectronics, photonics, and electronics.

[1]  Linyou Cao,et al.  Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS2. , 2014, Nano letters.

[2]  X. Duan,et al.  Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. , 2013, Nature nanotechnology.

[3]  Aaron M. Jones,et al.  Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2 , 2013, Nature Physics.

[4]  Qinsheng Wang,et al.  Valley carrier dynamics in monolayer molybdenum disulfide from helicity-resolved ultrafast pump-probe spectroscopy. , 2013, ACS nano.

[5]  Arindam Ghosh,et al.  Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. , 2013, Nature nanotechnology.

[6]  A. Tkatchenko,et al.  Scaling laws for van der Waals interactions in nanostructured materials , 2013, Nature Communications.

[7]  Hyunyong Choi,et al.  Exciton dynamics in atomically thin MoS2: Interexcitonic interaction and broadening kinetics , 2013, 1308.2023.

[8]  Hongtao Yuan,et al.  Zeeman-type spin splitting controlled by an electric field , 2013, Nature Physics.

[9]  Haotian Wang,et al.  MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. , 2013, Nano letters.

[10]  A. Javey,et al.  Near-ideal electrical properties of InAs/WSe2 van der Waals heterojunction diodes , 2013 .

[11]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[12]  Feng Ding,et al.  Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe₂ , TaS₂ , and TaSe₂. , 2013, Small.

[13]  Priscilla D. Antunez,et al.  Solution-Phase Synthesis of Highly Conductive Tungsten Diselenide Nanosheets , 2013 .

[14]  Jing Guo,et al.  Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. , 2013, Nano letters.

[15]  W. Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[16]  G. Eda,et al.  Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. , 2013, Nanoscale.

[17]  Young-Jun Yu,et al.  Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices , 2013, Nature Communications.

[18]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[19]  Aaron M. Jones,et al.  Optical generation of excitonic valley coherence in monolayer WSe2. , 2013, Nature nanotechnology.

[20]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[21]  R. Schmidt,et al.  Photoluminescence emission and Raman response of monolayer MoS₂, MoSe₂, and WSe₂. , 2013, Optics express.

[22]  James R. McKone,et al.  Hydrogen evolution from Pt/Ru-coated p-type WSe2 photocathodes. , 2013, Journal of the American Chemical Society.

[23]  Libai Huang,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[24]  L. Chu,et al.  Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. , 2012, ACS nano.

[25]  S. Haigh,et al.  Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. , 2012, Nature nanotechnology.

[26]  Aaron M. Jones,et al.  Electrical control of neutral and charged excitons in a monolayer semiconductor , 2012, Nature Communications.

[27]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[28]  Sefaattin Tongay,et al.  Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. , 2012, Nano letters.

[29]  A. Ramasubramaniam Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides , 2012 .

[30]  H. Zeng,et al.  Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides , 2012, Scientific Reports.

[31]  S. Haigh,et al.  Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. , 2012, Nature materials.

[32]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[33]  B. Liu,et al.  Hysteresis in single-layer MoS2 field effect transistors. , 2012, ACS nano.

[34]  N. Peres,et al.  Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures , 2011, Science.

[35]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[36]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[37]  K. Novoselov Nobel Lecture: Graphene: Materials in the Flatland , 2011 .

[38]  A. Neto,et al.  New directions in science and technology: two-dimensional crystals , 2011 .

[39]  Kostya S. Novoselov,et al.  Graphene: Materials in the flatland , 2011 .

[40]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[41]  D. Cahill,et al.  Synthesis and properties of turbostratically disordered, ultrathin WSe 2 films , 2010 .

[42]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[43]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[44]  G. Solanki,et al.  Growth and transport property measurements of rhenium doped tungsten diselenide single crystal , 2009 .

[45]  V. Podzorov,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004, cond-mat/0401243.

[46]  Klein,et al.  Picosecond imaging of photoexcited carriers in quantum wells: Anomalous lateral confinement at high densities. , 1988, Physical review. B, Condensed matter.

[47]  Onkar Nath Srivastava,et al.  LETTER TO THE EDITOR: The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell , 1988 .

[48]  Wold,et al.  Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy. , 1987, Physical review. B, Condensed matter.

[49]  Haas,et al.  Electronic structure of MoSe2, MoS2, and WSe2. II. The nature of the optical band gaps. , 1987, Physical review. B, Condensed matter.

[50]  Miller,et al.  Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. , 1985, Physical review. B, Condensed matter.

[51]  Reshef Tenne,et al.  Passivation of recombination centers in n‐WSe2 yields high efficiency (>14%) photoelectrochemical cell , 1985 .

[52]  Miller,et al.  Band-gap renormalization in semiconductor quantum wells containing carriers. , 1985, Physical review. B, Condensed matter.

[53]  S. Wagner,et al.  pn junctions in tungsten diselenide , 1983 .

[54]  A. Heller,et al.  Relationship between surface morphology and solar conversion efficiency of tungsten diselenide photoanodes , 1980 .

[55]  W. Y. Liang,et al.  Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2 , 1976 .

[56]  F. Consadori,et al.  Crystal Size Effects on the Exciton Absorption Spectrum of WSe 2 , 1970 .