Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope

[1]  M. Nussenzweig,et al.  Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies , 2020, Cell.

[2]  C. Rice,et al.  Convergent Antibody Responses to SARS-CoV-2 Infection in Convalescent Individuals , 2020, bioRxiv.

[3]  M. Gardner Promise and Progress of an HIV-1 Cure by Adeno-Associated Virus Vector Delivery of Anti-HIV-1 Biologics , 2020, Frontiers in Cellular and Infection Microbiology.

[4]  D. Ho,et al.  VSV-Displayed HIV-1 Envelope Identifies Broadly Neutralizing Antibodies Class-Switched to IgG and IgA , 2020, Cell host & microbe.

[5]  Chaim A. Schramm,et al.  HIV-1 Envelope and MPER Antibody Structures in Lipid Assemblies , 2019, bioRxiv.

[6]  Ivelin S Georgiev,et al.  NFPws: a web server for delineating broadly neutralizing antibody specificities from serum HIV-1 neutralization data , 2019, Bioinform..

[7]  F. Klein,et al.  Antibody-mediated prevention and treatment of HIV-1 infection , 2018, Retrovirology.

[8]  L. Stamatatos,et al.  Germline VRC01 antibody recognition of a modified clade C HIV-1 envelope trimer and a glycosylated HIV-1 gp120 core , 2018, eLife.

[9]  Erik Lindahl,et al.  New tools for automated high-resolution cryo-EM structure determination in RELION-3 , 2018, eLife.

[10]  D. Burton,et al.  Recent progress in broadly neutralizing antibodies to HIV , 2018, Nature Immunology.

[11]  Nico Pfeifer,et al.  Combination therapy with anti-HIV-1 antibodies maintains viral suppression , 2018, Nature.

[12]  Nico Pfeifer,et al.  Safety and anti-viral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals , 2018, Nature Medicine.

[13]  J. Mascola,et al.  HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure. , 2018, Immunity.

[14]  J. Mascola,et al.  Complete functional mapping of infection- and vaccine-elicited antibodies against the fusion peptide of HIV , 2018, bioRxiv.

[15]  U. Baxa,et al.  A Neutralizing Antibody Recognizing Primarily N‐Linked Glycan Targets the Silent Face of the HIV Envelope , 2018, Immunity.

[16]  J. Mascola,et al.  Safety, tolerability, and immunogenicity of two Zika virus DNA vaccine candidates in healthy adults: randomised, open-label, phase 1 clinical trials , 2017, The Lancet.

[17]  B. Korber,et al.  Protection against a mixed SHIV challenge by a broadly neutralizing antibody cocktail , 2017, Science Translational Medicine.

[18]  Mario Roederer,et al.  Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques , 2017, Science.

[19]  S. Zolla-Pazner,et al.  Non-neutralizing Antibodies Alter the Course of HIV-1 Infection In Vivo , 2017, Cell.

[20]  D. Burton,et al.  A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer Apex via a Long, Rigidified, and Anionic β-Hairpin Structure , 2017, Immunity.

[21]  B. Haynes,et al.  Developing an HIV vaccine , 2017, Science.

[22]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[23]  B. Walker,et al.  Coexistence of potent HIV-1 broadly neutralizing antibodies and antibody-sensitive viruses in a viremic controller , 2017, Science Translational Medicine.

[24]  Ben Murrell,et al.  Antibody 10-1074 suppresses viremia in HIV-1-infected individuals , 2017, Nature Medicine.

[25]  M. Nussenzweig,et al.  Progress toward active or passive HIV-1 vaccination , 2017, The Journal of experimental medicine.

[26]  Ian A Wilson,et al.  The HIV‐1 envelope glycoprotein structure: nailing down a moving target , 2017, Immunological reviews.

[27]  Lynn Morris,et al.  Mapping Polyclonal HIV-1 Antibody Responses via Next-Generation Neutralization Fingerprinting , 2017, PLoS pathogens.

[28]  D. Burton,et al.  Identification and specificity of broadly neutralizing antibodies against HIV , 2017, Immunological reviews.

[29]  G. Learn,et al.  Effect of HIV Antibody VRC01 on Viral Rebound after Treatment Interruption. , 2016, The New England journal of medicine.

[30]  M. Nussenzweig,et al.  Sequencing and cloning of antigen-specific antibodies from mouse memory B cells , 2016, Nature Protocols.

[31]  A. Trkola,et al.  Determinants of HIV-1 broadly neutralizing antibody induction , 2016, Nature Medicine.

[32]  M. Nussenzweig,et al.  Natively glycosylated HIV-1 Env structure reveals new mode for antibody recognition of the CD4-binding site , 2016, Nature Structural &Molecular Biology.

[33]  Nico Pfeifer,et al.  HIV-1 antibody 3BNC117 suppresses viral rebound in humans during treatment interruption , 2016, Nature.

[34]  Nico Pfeifer,et al.  HIV-1 therapy with monoclonal antibody 3BNC117 elicits host immune responses against HIV-1 , 2016, Science.

[35]  Dennis R Burton,et al.  Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design. , 2016, Annual review of immunology.

[36]  A. Chakraborty,et al.  Enhanced clearance of HIV-1–infected cells by broadly neutralizing antibodies against HIV-1 in vivo , 2016, Science.

[37]  Muyuan Chen,et al.  High resolution single particle refinement in EMAN2.1. , 2016, Methods.

[38]  J. Mascola,et al.  A single injection of anti-HIV-1 antibodies protects against repeated SHIV challenges , 2016, Nature.

[39]  Weston B Struwe,et al.  Composition and Antigenic Effects of Individual Glycan Sites of a Trimeric HIV-1 Envelope Glycoprotein , 2016, Cell reports.

[40]  Lynn Morris,et al.  Optimal Combinations of Broadly Neutralizing Antibodies for Prevention and Treatment of HIV-1 Clade C Infection , 2016, PLoS pathogens.

[41]  Ben Murrell,et al.  Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort , 2016, PLoS pathogens.

[42]  O. Khatib,et al.  Springer Handbook of Robotics , 2008 .

[43]  J. Mascola,et al.  Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection , 2015, Science Translational Medicine.

[44]  John P. Moore,et al.  Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes , 2015, Cell.

[45]  Keith S Wilson,et al.  Privateer: software for the conformational validation of carbohydrate structures , 2015, Nature Structural &Molecular Biology.

[46]  Lynn Morris,et al.  New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency , 2015, Journal of Virology.

[47]  A. McDowall,et al.  Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env , 2015, Cell.

[48]  B. Haynes New approaches to HIV vaccine development. , 2015, Current opinion in immunology.

[49]  Kai Zhang,et al.  Gctf: Real-time CTF determination and correction , 2015, bioRxiv.

[50]  Daniel W. Kulp,et al.  Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice , 2015, Cell.

[51]  L. Morris,et al.  HIV broadly neutralizing antibody targets , 2015, Current opinion in HIV and AIDS.

[52]  Michael S. Seaman,et al.  Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117 , 2015, Nature.

[53]  John P. Moore,et al.  A Native-Like SOSIP.664 Trimer Based on an HIV-1 Subtype B env Gene , 2015, Journal of Virology.

[54]  John P. Moore,et al.  Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex , 2014, Proceedings of the National Academy of Sciences.

[55]  S. Zolla-Pazner,et al.  Brief Definitive Report , 2022 .

[56]  J. Mascola,et al.  Passive transfer of modest titers of potent and broadly neutralizing anti-HIV monoclonal antibodies block SHIV infection in macaques , 2014, The Journal of experimental medicine.

[57]  M. Nussenzweig,et al.  Broadly Neutralizing Antibodies and Viral Inducers Decrease Rebound from HIV-1 Latent Reservoirs in Humanized Mice , 2014, Cell.

[58]  Young Do Kwon,et al.  Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody In Vitro Improves Protection against Lentiviral Infection In Vivo , 2014, Journal of Virology.

[59]  Hongmei Gao,et al.  Optimization and validation of the TZM-bl assay for standardized assessments of neutralizing antibodies against HIV-1. , 2014, Journal of immunological methods.

[60]  Wayne C Koff,et al.  Broadly neutralizing HIV antibodies define a glycan-dependent epitope on the prefusion conformation of gp41 on cleaved envelope trimers. , 2014, Immunity.

[61]  John P. Moore,et al.  Stable 293 T and CHO cell lines expressing cleaved, stable HIV-1 envelope glycoprotein trimers for structural and vaccine studies , 2014, Retrovirology.

[62]  Florian Klein,et al.  Structural Insights on the Role of Antibodies in HIV-1 Vaccine and Therapy , 2014, Cell.

[63]  B. Korber,et al.  Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection , 2014, AIDS.

[64]  Raphael Gottardo,et al.  Global Panel of HIV-1 Env Reference Strains for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies , 2013, Journal of Virology.

[65]  M. Nussenzweig,et al.  Antibody-mediated immunotherapy of macaques chronically infected with SHIV suppresses viraemia , 2013, Nature.

[66]  Michael S. Seaman,et al.  Therapeutic Efficacy of Potent Neutralizing HIV-1-Specific Monoclonal Antibodies in SHIV-Infected Rhesus Monkeys , 2013, Nature.

[67]  J. Mascola,et al.  Isolation of human monoclonal antibodies from peripheral blood B cells , 2013, Nature Protocols.

[68]  Rolf Kaiser,et al.  HIV-1 suppression and durable control by combining single broadly neutralizing antibodies and antiretroviral drugs in humanized mice , 2013, Proceedings of the National Academy of Sciences.

[69]  John P. Moore,et al.  A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies , 2013, PLoS pathogens.

[70]  Florian Klein,et al.  Computational analysis of anti–HIV-1 antibody neutralization panel data to identify potential functional epitope residues , 2013, Proceedings of the National Academy of Sciences.

[71]  Ron Diskin,et al.  Restricting HIV-1 pathways for escape using rationally designed anti–HIV-1 antibodies , 2013, The Journal of experimental medicine.

[72]  Ning Ma,et al.  IgBLAST: an immunoglobulin variable domain sequence analysis tool , 2013, Nucleic Acids Res..

[73]  David Nemazee,et al.  Rational immunogen design to target specific germline B cell receptors , 2012, Retrovirology.

[74]  Tongqing Zhou,et al.  Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization , 2013, Science.

[75]  L. Stamatatos,et al.  Engineering HIV envelope protein to activate germline B cell receptors of broadly neutralizing anti-CD4 binding site antibodies , 2013, The Journal of experimental medicine.

[76]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[77]  Lisa J. Bernstein,et al.  A strategy for risk mitigation of antibodies with fast clearance , 2012, mAbs.

[78]  Michael S. Seaman,et al.  Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies , 2012, Proceedings of the National Academy of Sciences.

[79]  Ron Diskin,et al.  HIV therapy by a combination of broadly neutralizing antibodies in humanized mice , 2012, Nature.

[80]  Sung Gyun Kang,et al.  One-Step Sequence- and Ligation-Independent Cloning as a Rapid and Versatile Cloning Method for Functional Genomics Studies , 2012, Applied and Environmental Microbiology.

[81]  Ron Diskin,et al.  Increasing the Potency and Breadth of an HIV Antibody by Using Structure-Based Rational Design , 2011, Science.

[82]  Ron Diskin,et al.  Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding , 2011, Science.

[83]  Feng Gao,et al.  Polyclonal B Cell Responses to Conserved Neutralization Epitopes in a Subset of HIV-1-Infected Individuals , 2011, Journal of Virology.

[84]  Robert M. Hanson,et al.  Web servers and services for electrostatics calculations with APBS and PDB2PQR , 2011, J. Comput. Chem..

[85]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[86]  L. Morris,et al.  The Neutralization Breadth of HIV-1 Develops Incrementally over Four Years and Is Associated with CD4+ T Cell Decline and High Viral Load during Acute Infection , 2011, Journal of Virology.

[87]  M. Altfeld,et al.  Characteristics of the Earliest Cross-Neutralizing Antibody Response to HIV-1 , 2011, PLoS pathogens.

[88]  Mario Roederer,et al.  Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1 , 2010, Science.

[89]  Dennis R. Burton,et al.  A Limited Number of Antibody Specificities Mediate Broad and Potent Serum Neutralization in Selected HIV-1 Infected Individuals , 2010, PLoS pathogens.

[90]  S. Plotkin Correlates of Protection Induced by Vaccination , 2010, Clinical and Vaccine Immunology.

[91]  Pamela J. Bjorkman,et al.  Few and Far Between: How HIV May Be Evading Antibody Avidity , 2010, PLoS pathogens.

[92]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[93]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[94]  W. Kabsch XDS , 2010, Acta crystallographica. Section D, Biological crystallography.

[95]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[96]  Holly Janes,et al.  Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies , 2009, Journal of Virology.

[97]  Richard T. Wyatt,et al.  Breadth of Human Immunodeficiency Virus-Specific Neutralizing Activity in Sera: Clustering Analysis and Association with Clinical Variables , 2009, Journal of Virology.

[98]  Pham Phung,et al.  Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target , 2009, Science.

[99]  Pascal Poignard,et al.  Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques , 2009, Nature Medicine.

[100]  Terri Wrin,et al.  Human Immunodeficiency Virus Type 1 Elite Neutralizers: Individuals with Broad and Potent Neutralizing Activity Identified by Using a High-Throughput Neutralization Assay together with an Analytical Selection Algorithm , 2009, Journal of Virology.

[101]  D. Burton,et al.  Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers , 2009, PLoS pathogens.

[102]  F. Pereyra,et al.  A method for identification of HIV gp140 binding memory B cells in human blood. , 2009, Journal of immunological methods.

[103]  Richard T. Wyatt,et al.  Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals , 2009, Nature.

[104]  Xuesong Yu,et al.  Factors Associated with the Development of Cross-Reactive Neutralizing Antibodies during Human Immunodeficiency Virus Type 1 Infection , 2008, Journal of Virology.

[105]  Hui Li,et al.  Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection , 2008, Proceedings of the National Academy of Sciences.

[106]  B. Korber,et al.  Deciphering Human Immunodeficiency Virus Type 1 Transmission and Early Envelope Diversification by Single-Genome Amplification and Sequencing , 2008, Journal of Virology.

[107]  Michel C Nussenzweig,et al.  Efficient generation of monoclonal antibodies from single human B cells by single cell RT-PCR and expression vector cloning. , 2008, Journal of immunological methods.

[108]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[109]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[110]  D. Burton,et al.  Fc receptor but not complement binding is important in antibody protection against HIV , 2007, Nature.

[111]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[112]  Conrad C. Huang,et al.  Visualizing density maps with UCSF Chimera. , 2007, Journal of structural biology.

[113]  Xiping Wei,et al.  Human Immunodeficiency Virus Type 1 env Clones from Acute and Early Subtype B Infections for Standardized Assessments of Vaccine-Elicited Neutralizing Antibodies , 2005, Journal of Virology.

[114]  Renate Kunert,et al.  Cardiolipin Polyspecific Autoreactivity in Two Broadly Neutralizing HIV-1 Antibodies , 2005, Science.

[115]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[116]  Jérôme Lane,et al.  IMGT®, the international ImMunoGeneTics information system® , 2004, Nucleic Acids Res..

[117]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[118]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[119]  Markus G. Manz,et al.  Development of a Human Adaptive Immune System in Cord Blood Cell-Transplanted Mice , 2004, Science.

[120]  D. Burton Antibodies, viruses and vaccines , 2002, Nature Reviews Immunology.

[121]  P. Bieniasz,et al.  Envelope-Dependent, Cyclophilin-Independent Effects of Glycosaminoglycans on Human Immunodeficiency Virus Type 1 Attachment and Infection , 2002, Journal of Virology.

[122]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[123]  Perry Watts,et al.  An algorithm for mapping positively selected members of quasispecies-type viruses , 2001, BMC Bioinformatics.

[124]  J. Sodroski,et al.  Characterization of Stable, Soluble Trimers Containing Complete Ectodomains of Human Immunodeficiency Virus Type 1 Envelope Glycoproteins , 2000, Journal of Virology.

[125]  Tahir A. Rizvi,et al.  Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian–human immunodeficiency virus infection , 2000, Nature Medicine.

[126]  J. Mascola,et al.  Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies , 2000, Nature Medicine.

[127]  Peter D. Kwong,et al.  The antigenic structure of the HIV gp120 envelope glycoprotein , 1998, Nature.

[128]  J. Sodroski,et al.  Immunological evidence for interactions between the first, second, and fifth conserved domains of the gp120 surface glycoprotein of human immunodeficiency virus type 1 , 1994, Journal of virology.

[129]  J. Sodroski,et al.  Identification of individual human immunodeficiency virus type 1 gp120 amino acids important for CD4 receptor binding , 1990, Journal of virology.