Modeling and Simplifying Morse Complexes in Arbitrary Dimensions

Ascending and descending Morse complexes, defined by a scalar function f over a manifold domain M, decompose M into regions of influence of the critical points of f, thus representing themorphology of the scalar function f over M in a compact way. Here, we introduce two simplification operators on Morse complexes which work in arbitrary dimensions and we discuss their interpretation as n-dimensional Euler operators. We consider a dual representation of the two Morse complexes in terms of an incidence graph and we describe how our simplification operators affect the graph representation. This provides the basis for defining a multi-scale graph-based model of Morse complexes in arbitrary dimensions.

[1]  Emanuele Danovaro,et al.  Topological Analysis and Characterization of Discrete Scalar Fields , 2002, Theoretical Foundations of Computer Vision.

[2]  Valerio Pascucci,et al.  Morse-smale complexes for piecewise linear 3-manifolds , 2003, SCG '03.

[3]  Renato Pajarola,et al.  Topology preserving and controlled topology simplifying multiresolution isosurface extraction , 2000 .

[4]  T. Banchoff Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .

[5]  G. W. Wolf Topographic Surfaces and Surface Networks , 2006 .

[6]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[7]  David C. Banks,et al.  Extracting iso-valued features in 4-dimensional scalar fields , 1998, VVS '98.

[8]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[9]  Herbert Edelsbrunner,et al.  Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.

[10]  Yuriko Takeshima,et al.  Topological volume skeletonization and its application to transfer function design , 2004, Graph. Model..

[11]  Chandrajit L. Bajaj,et al.  Topology preserving data simplification with error bounds , 1998, Comput. Graph..

[12]  Frédéric Chazal,et al.  Molecular shape analysis based upon the morse-smale complex and the connolly function , 2002, SCG '03.

[13]  Roger Crawfis,et al.  Isosurfacing in higher dimensions , 2000 .

[14]  Emanuele Danovaro,et al.  Extracting terrain morphology - a new algorithm and a comparative evaluation , 2007, GRAPP.

[15]  Bernd Hamann,et al.  Detecting Critical Regions in Scalar Fields , 2003, VisSym.

[16]  Hans Hagen,et al.  Exploring scalar fields using critical isovalues , 2002, IEEE Visualization, 2002. VIS 2002..

[17]  Leila De Floriani,et al.  Morphological Representations of Scalar Fields , 2008, Shape Analysis and Structuring.

[18]  Bernd Hamann,et al.  A topological hierarchy for functions on triangulated surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[19]  Bernd Hamann,et al.  Topology-based simplification for feature extraction from 3D scalar fields , 2005, VIS 05. IEEE Visualization, 2005..

[20]  Leila De Floriani,et al.  Shape Representations Based on Simplicial and Cell Complexes , 2007, Eurographics.

[21]  Valerio Pascucci Topology Diagrams of Scalar Fields in Scientific Visualisation , 2006 .

[22]  J. Hart,et al.  Fair morse functions for extracting the topological structure of a surface mesh , 2004, SIGGRAPH 2004.

[23]  R. Forman Morse Theory for Cell Complexes , 1998 .

[24]  Emanuele Danovaro,et al.  A Discrete Approach to Compute Terrain Morphology , 2007, VISIGRAPP.

[25]  Tosiyasu L. Kunii,et al.  Algorithms for Extracting Correct Critical Points and Constructing Topological Graphs from Discrete Geographical Elevation Data , 1995, Comput. Graph. Forum.

[26]  Leila De Floriani,et al.  Cancellation of Critical Points in 2D and 3D Morse and Morse-Smale Complexes , 2008, DGCI.

[27]  Bernd Hamann,et al.  A topological approach to simplification of three-dimensional scalar functions , 2006, IEEE Transactions on Visualization and Computer Graphics.