Multiple Network Alignment via MultiMAGNA++

Network alignment (NA) aims to find a node mapping that identifies topologically or functionally similar network regions between molecular networks of different species. Analogous to genomic sequence alignment, NA can be used to transfer biological knowledge from well- to poorly-studied species between aligned network regions. Pairwise NA (PNA) finds similar regions between two networks while multiple NA (MNA) can align more than two networks. We focus on MNA. Existing MNA methods aim to maximize total similarity over all aligned nodes (node conservation). Then, they evaluate alignment quality by measuring the amount of conserved edges, but only after the alignment is constructed. Directly optimizing edge conservation during alignment construction in addition to node conservation may result in superior alignments. Thus, we present a novel MNA method called multiMAGNA++ that can achieve this. Indeed, multiMAGNA++ outperforms or is on par with existing MNA methods, while often completing faster than existing methods. That is, multiMAGNA++ scales well to larger network data and can be parallelized effectively. During method evaluation, we also introduce new MNA quality measures to allow for more fair MNA method comparison compared to the existing alignment quality measures. The multiMAGNA++ code is available on the method's web page at http://nd.edu/~cone/multiMAGNA++/.

[1]  Behnam Neyshabur,et al.  NETAL: a new graph-based method for global alignment of protein-protein interaction networks , 2013, Bioinform..

[2]  Cesim Erten,et al.  BEAMS: backbone extraction and merge strategy for the global many-to-many alignment of multiple PPI networks , 2014, Bioinform..

[3]  Jan Martens,et al.  NABEECO: biological network alignment with bee colony optimization algorithm , 2013, GECCO.

[4]  Tijana Milenkovic,et al.  GREAT: GRaphlet Edge-based network AlignmenT , 2014, 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[5]  Robert Patro,et al.  Global network alignment using multiscale spectral signatures , 2012, Bioinform..

[6]  Jean Ponce,et al.  A Tensor-Based Algorithm for High-Order Graph Matching , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Luonan Chen,et al.  Network‐Based Prediction of Protein Function , 2009 .

[8]  Tamara G. Kolda,et al.  Triangular Alignment (TAME): A Tensor-Based Approach for Higher-Order Network Alignment , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[9]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[10]  Nicola J. Mulder,et al.  Using biological networks to improve our understanding of infectious diseases , 2014, Computational and structural biotechnology journal.

[11]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[12]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[13]  Janez Demšar,et al.  Computation of Graphlet Orbits for Nodes and Edges in Sparse Graphs , 2016 .

[14]  Lei Meng,et al.  The post-genomic era of biological network alignment , 2015, EURASIP J. Bioinform. Syst. Biol..

[15]  Jiong Guo,et al.  GEDEVO: An Evolutionary Graph Edit Distance Algorithm for Biological Network Alignment , 2013, GCB.

[16]  Vesna Memisevic,et al.  Global G RAph A Lignment of Biological Networks , 2022 .

[17]  Kara Dolinski,et al.  The BioGRID Interaction Database: 2008 update , 2008, Nucleic Acids Res..

[18]  Natasa Przulj,et al.  Fuse: multiple network alignment via data fusion , 2014, Bioinform..

[19]  Jian Ye,et al.  BLAST: improvements for better sequence analysis , 2006, Nucleic Acids Res..

[20]  M. Vidal,et al.  Literature-curated protein interaction datasets , 2009, Nature Methods.

[21]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[22]  Giorgios Kollias,et al.  Network Similarity Decomposition (NSD): A Fast and Scalable Approach to Network Alignment , 2012, IEEE Transactions on Knowledge and Data Engineering.

[23]  Jie Tang,et al.  Simultaneous Optimization of both Node and Edge Conservation in Network Alignment via WAVE , 2014, WABI.

[24]  Ryan A. Rossi,et al.  Efficient Graphlet Counting for Large Networks , 2015, 2015 IEEE International Conference on Data Mining.

[25]  Knut Reinert,et al.  NetCoffee: a fast and accurate global alignment approach to identify functionally conserved proteins in multiple networks , 2014, Bioinform..

[26]  Sean R. Collins,et al.  Toward a Comprehensive Atlas of the Physical Interactome of Saccharomyces cerevisiae*S , 2007, Molecular & Cellular Proteomics.

[27]  Vladimir Kolmogorov,et al.  Feature Correspondence Via Graph Matching: Models and Global Optimization , 2008, ECCV.

[28]  Byung-Jun Yoon,et al.  Accurate multiple network alignment through context-sensitive random walk , 2015, BMC Systems Biology.

[29]  Wayne Hayes,et al.  Optimal Network Alignment with Graphlet Degree Vectors , 2010, Cancer informatics.

[30]  Tijana Milenkovic,et al.  MAGNA: Maximizing Accuracy in Global Network Alignment , 2013, Bioinform..

[31]  Byung-Jun Yoon,et al.  SMETANA: Accurate and Scalable Algorithm for Probabilistic Alignment of Large-Scale Biological Networks , 2013, PloS one.

[32]  Tijana Milenkovic,et al.  MAGNA++: Maximizing Accuracy in Global Network Alignment via both node and edge conservation , 2015, Bioinform..

[33]  Tijana Milenkoviæ,et al.  Uncovering Biological Network Function via Graphlet Degree Signatures , 2008, Cancer informatics.

[34]  Jiong Guo,et al.  Multiple graph edit distance: simultaneous topological alignment of multiple protein-protein interaction networks with an evolutionary algorithm , 2014, GECCO.

[35]  Chris H. Q. Ding,et al.  Simultaneous clustering of multi-type relational data via symmetric nonnegative matrix tri-factorization , 2011, CIKM '11.

[36]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[37]  Janez Demsar,et al.  A combinatorial approach to graphlet counting , 2014, Bioinform..

[38]  Bonnie Berger,et al.  IsoRankN: spectral methods for global alignment of multiple protein networks , 2009, Bioinform..

[39]  Natasa Przulj,et al.  L-GRAAL: Lagrangian graphlet-based network aligner , 2015, Bioinform..

[40]  Shawn Gu,et al.  From homogeneous to heterogeneous network alignment via colored graphlets , 2017, Scientific Reports.

[41]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[42]  Aaron Striegel,et al.  Local versus global biological network alignment , 2015, Bioinform..

[43]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[44]  Yuval Shavitt,et al.  RAGE - A rapid graphlet enumerator for large networks , 2012, Comput. Networks.

[45]  Jinbo Xu,et al.  HubAlign: an accurate and efficient method for global alignment of protein–protein interaction networks , 2014, Bioinform..

[46]  Jugal K. Kalita,et al.  Global Alignment of Protein-Protein Interaction Networks: A Survey , 2016, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[47]  Danai Koutra,et al.  BIG-ALIGN: Fast Bipartite Graph Alignment , 2013, 2013 IEEE 13th International Conference on Data Mining.

[48]  Nil Mamano,et al.  SANA: Simulated Annealing Network Alignment Applied to Biological Networks , 2016, 1607.02642.

[49]  O. Kuchaiev,et al.  Topological network alignment uncovers biological function and phylogeny , 2008, Journal of The Royal Society Interface.

[50]  Jugal K. Kalita,et al.  A comparison of algorithms for the pairwise alignment of biological networks , 2014, Bioinform..

[51]  Natasa Przulj,et al.  Integrative network alignment reveals large regions of global network similarity in yeast and human , 2011, Bioinform..

[52]  Han Zhao,et al.  Global Network Alignment in the Context of Aging , 2013, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[53]  Bonnie Berger,et al.  Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology , 2007, RECOMB.

[54]  Pietro Hiram Guzzi,et al.  Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin , 2017, Briefings Bioinform..

[55]  Jugal K. Kalita,et al.  A multiobjective memetic algorithm for PPI network alignment , 2015, Bioinform..

[56]  Yihan Sun,et al.  Fair evaluation of global network aligners , 2015, Algorithms for Molecular Biology.

[57]  Ying Wang,et al.  Algorithms for Large, Sparse Network Alignment Problems , 2009, 2009 Ninth IEEE International Conference on Data Mining.