A Critical Review of Techniques for the Experimental Extraction of the Thermal Resistance of Bipolar Transistors from DC Measurements—Part I: Thermometer-Based Approaches

This paper presents a critical and detailed overview of experimental techniques for the extraction of the thermal resistance of bipolar transistors from simple DC current/voltage measurements. More specifically, this study focuses on techniques based on a thermometer, i.e., the relation between the base-emitter voltage and the junction temperature. The theory behind the techniques is described with a unified and comprehensible nomenclature. Advantages, underlying approximations, and limitations of the methods are illustrated. The accuracy is assessed by emulating the DC measurements with PSPICE electrothermal simulations of a transistor model, applying the techniques to the simulated currents/voltages, and comparing the extracted thermal resistance data with the values obtained from the target formulation embedded in the transistor model. An InGaP/GaAs HBT and an Si/SiGe HBT for high-frequency applications are considered as case-studies.

[1]  V. d’Alessandro,et al.  Methods for Extracting the Temperature- and Power-Dependent Thermal Resistance for SiGe and III-V HBTs From DC Measurements: A Review and Comparison Across Technologies , 2022, IEEE Transactions on Electron Devices.

[2]  V. d’Alessandro,et al.  Experimental Determination, Modeling, and Simulation of Nonlinear Thermal Effects in Bipolar Transistors under Static Conditions: A Critical Review and Update , 2022, Energies.

[3]  Lorenzo Codecasa,et al.  Analysis of Electrothermal Effects in Devices and Arrays in InGaP/GaAs HBT Technology , 2021, Electronics.

[4]  D. Céli,et al.  Extraction of Compact Static Thermal Model Parameters for SiGe HBTs , 2021, IEEE Transactions on Electron Devices.

[5]  S. Frégonèse,et al.  Validation of Thermal Resistance Extracted From Measurements on Stripe Geometry SiGe HBTs , 2019, IEEE Transactions on Electron Devices.

[6]  Vincenzo d’Alessandro,et al.  On the Modeling of the Avalanche Multiplication Coefficient in SiGe HBTs , 2019, IEEE Transactions on Electron Devices.

[7]  Lorenzo Codecasa,et al.  Accurate and efficient analysis of the upward heat flow in InGaP/GaAs HBTs through an automated FEM‐based tool and Design of Experiments , 2018, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields.

[8]  V. d’Alessandro,et al.  Analysis of Electrothermal and Impact-Ionization Effects in Bipolar Cascode Amplifiers , 2018, IEEE Transactions on Electron Devices.

[9]  Alessandro Magnani,et al.  Simulation comparison of InGaP/GaAs HBT thermal performance in wire-bonding and flip-chip technologies , 2017, Microelectron. Reliab..

[10]  S. Frégonèse,et al.  Extracting the temperature dependence of thermal resistance from temperature-controlled DC measurements of sige HBTs , 2017, 2017 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[11]  Alessandro Magnani,et al.  Advanced thermal simulation of SiGe: C HBTs including back-end-of-line , 2016, Microelectron. Reliab..

[12]  V. d’Alessandro,et al.  Experimental DC Extraction of the Base Resistance of Bipolar Transistors: Application to SiGe:C HBTs , 2016, IEEE Transactions on Electron Devices.

[13]  Michael Schroter,et al.  Methods for Determining the Emitter Resistance in SiGe HBTs: A Review and an Evaluation Across Technology Generations , 2015, IEEE Transactions on Electron Devices.

[14]  Michael Schroter,et al.  A simple and accurate method for extracting the emitter and thermal resistance of BJTs and HBTs , 2014, 2014 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[15]  Vincenzo d'Alessandro,et al.  Influence of Scaling and Emitter Layout on the Thermal Behavior of Toward-THz SiGe:C HBTs , 2014, IEEE Transactions on Electron Devices.

[16]  Chien-Ping Lee,et al.  Studies of Safe Operating Area of InGaP/GaAs Heterojunction Bipolar Transistors , 2014, IEEE Transactions on Electron Devices.

[17]  A. Parker,et al.  Measurement and Modeling of Thermal Behavior in InGaP/GaAs HBTs , 2013, IEEE Transactions on Electron Devices.

[18]  T. Zimmer,et al.  A Scalable Electrothermal Model for Transient Self-Heating Effects in Trench-Isolated SiGe HBTs , 2012, IEEE Transactions on Electron Devices.

[19]  eletro-tecnologia tecnologia da comunicação Eletrônicas Advanced Design System , 2012 .

[20]  Gilles Amadou Koné Caractérisation des effets thermiques et des mécanismes de défaillance spécifiques aux transistors bipolaires submicroniques sur substrat InP dédiés aux transmissions optiques Ethernet à 112 Gb/s , 2011 .

[21]  Z. Huszka,et al.  Improving parasitic emitter resistance determination methods for advanced SiGe:C HBT transistors , 2011, 2011 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[22]  D. Celi,et al.  Impact of layout and technology parameters on the thermal resistance of SiGe:C HBTs , 2010, 2010 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM).

[23]  Anjan Chakravorty,et al.  Compact Hierarchical Bipolar Transistor Modeling With HiCUM , 2010, International Series on Advances in Solid State Electronics and Technology.

[24]  Niccolò Rinaldi,et al.  Avalanche multiplication and pinch-in models for simulating electrical instability effects in SiGe HBTs , 2010, Microelectron. Reliab..

[25]  V. d’Alessandro,et al.  Thermal Design of Multifinger Bipolar Transistors , 2010, IEEE Transactions on Electron Devices.

[26]  V. d'Alessandro,et al.  Evaluating the self-heating thermal resistance of bipolar transistors by DC measurements: A critical review and update , 2009, 2009 IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[27]  V. d'Alessandro,et al.  Influence of Concurrent Electrothermal and Avalanche Effects on the Safe Operating Area of Multifinger Bipolar Transistors , 2009, IEEE Transactions on Electron Devices.

[28]  V. d'Alessandro,et al.  Theory of electrothermal behavior of bipolar transistors: part III-impact ionization , 2006, IEEE Transactions on Electron Devices.

[29]  V. d'Alessandro,et al.  Restabilizing mechanisms after the onset of thermal instability in bipolar transistors , 2006, IEEE Transactions on Electron Devices.

[30]  G. Freeman,et al.  Structure optimization of trench-isolated SiGe HBTs for simultaneous improvements in thermal and electrical performances , 2005, IEEE Transactions on Electron Devices.

[31]  P. Ersland,et al.  A new method to extract HBT thermal resistance and its temperature and power dependence , 2005, IEEE Transactions on Device and Materials Reliability.

[32]  V. d'Alessandro,et al.  Theory of electrothermal behavior of bipolar transistors: Part I -single-finger devices , 2005, IEEE Transactions on Electron Devices.

[33]  J.C.J. Paasschens,et al.  Dependence of thermal resistance on ambient and actual temperature , 2004, Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting.

[34]  T. Vanhoucke,et al.  Revised method for extraction of the thermal resistance applied to bulk and SOI SiGe HBTs , 2004, IEEE Electron Device Letters.

[35]  V. d'Alessandro,et al.  A back-wafer contacted silicon-on-glass integrated bipolar process. Part I. The conflict electrical versus thermal isolation , 2004, IEEE Transactions on Electron Devices.

[36]  V. d'Alessandro,et al.  A back-wafer contacted silicon-on-glass integrated bipolar process. Part II. A novel analysis of thermal breakdown , 2004, IEEE Transactions on Electron Devices.

[37]  M. Pfost,et al.  A practical method to extract the thermal resistance for heterojunction bipolar transistors , 2003, ESSDERC '03. 33rd Conference on European Solid-State Device Research, 2003..

[38]  T. Smy,et al.  Compact representation of temperature and power dependence of thermal resistance in Si, Inp and GaAs substrate devices using linear models , 2002 .

[39]  B. Jagannathan,et al.  Measurement and modeling of thermal resistance of high speed SiGe heterojunction bipolar transistors , 2001, 2001 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. Digest of Papers (IEEE Cat. No.01EX496).

[40]  Niccolò Rinaldi,et al.  Small-signal operation of semiconductor devices including self-heating, with application to thermal characterization and instability analysis , 2001 .

[41]  P. Tasker,et al.  Thermal parameter extraction technique using DC I-V data for HBT transistors , 2000, 2000 High Frequency Postgraduate Student Colloquium (Cat. No.00TH8539).

[42]  S. P. Marsh,et al.  Direct extraction technique to derive the junction temperature of HBT's under high self-heating bias conditions , 2000 .

[43]  B. Yeats,et al.  Inclusion of topside metal heat spreading in the determination of HBT temperatures by electrical and geometrical methods [GaAs devices] , 1999, GaAs IC Symposium. IEEE Gallium Arsenide Integrated Circuit Symposium. 21st Annual. Technical Digest 1999 (Cat. No.99CH36369).

[44]  E. Zanoni,et al.  A simple method for the thermal resistance measurement of AlGaAs/GaAs heterojunction bipolar transistors , 1998 .

[45]  D. J. Walkey,et al.  Simultaneous extraction of thermal and emitter series resistances in bipolar transistors , 1997, Proceedings of the 1997 Bipolar/BiCMOS Circuits and Technology Meeting.

[46]  Robert Fox,et al.  Thermal impedance extraction for bipolar transistors , 1996 .

[47]  Wen-Chau Liu,et al.  Measurement of junction temperature of an AlGaAs/GaAs heterojunction bipolar transistor operating at large power densities , 1995 .

[48]  Wen-Chau Liu,et al.  The collapse of current gain in multi-finger heterojunction bipolar transistors: its substrate temperature dependence, instability criteria, and modeling , 1994 .

[49]  J. Sitch,et al.  A new large signal HBT model , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[50]  S. Nelson,et al.  Current gain collapse in microwave multifinger heterojunction bipolar transistors operated at very high power densities , 1993 .

[51]  U. Seiler,et al.  Thermally triggered collapse of collector current in power heterojunction bipolar transistors , 1993, 1993 Proceedings of IEEE Bipolar/BiCMOS Circuits and Technology Meeting.

[52]  A. Gupta,et al.  CW measurement of HBT thermal resistance , 1992 .

[53]  Michael Reisch,et al.  Self-heating in BJT circuit parameter extraction , 1992 .

[54]  Peter M. Asbeck,et al.  Determination of junction temperature in AlGaAs/GaAs heterojunction bipolar transistors by electrical measurement , 1992 .

[55]  G. Macfarlane,et al.  FINE STRUCTURE IN THE ABSORPTION-EDGE SPECTRUM OF SI , 1957 .

[56]  S. L. Miller Ionization Rates for Holes and Electrons in Silicon , 1957 .

[57]  V. d’Alessandro Experimental DC extraction of the thermal resistance of bipolar transistors taking into account the Early effect , 2017 .

[58]  V. d’Alessandro,et al.  Influence of layout design and on-wafer heatspreaders on the thermal behavior of fully-isolated bipolar transistors: Part II - Dynamic analysis , 2010 .

[59]  John D. Cressler,et al.  Bipolar Transistors , 2007 .