Simplicial complex augmentation framework for bijective maps

Bijective maps are commonly used in many computer graphics and scientific computing applications, including texture, displacement, and bump mapping. However, their computation is numerically challenging due to the global nature of the problem, which makes standard smooth optimization techniques prohibitively expensive. We propose to use a scaffold structure to reduce this challenging and global problem to a local injectivity condition. This construction allows us to benefit from the recent advancements in locally injective maps optimization to efficiently compute large scale bijective maps (both in 2D and 3D), sidestepping the need to explicitly detect and avoid collisions. Our algorithm is guaranteed to robustly compute a globally bijective map, both in 2D and 3D. To demonstrate the practical applicability, we use it to compute globally bijective single patch parametrizations, to pack multiple charts into a single UV domain, to remove self-intersections from existing models, and to deform 3D objects while preventing self-intersections. Our approach is simple to implement, efficient (two orders of magnitude faster than competing methods), and robust, as we demonstrate in a stress test on a parametrization dataset with over a hundred meshes.

[1]  Randall Dougherty,et al.  Unflippable Tetrahedral Complexes , 2004, Discret. Comput. Geom..

[2]  Denis Zorin,et al.  Locally injective parametrization with arbitrary fixed boundaries , 2014, ACM Trans. Graph..

[3]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[4]  Yaron Lipman,et al.  Bounded distortion mapping spaces for triangular meshes , 2012, ACM Trans. Graph..

[5]  Craig Gotsman,et al.  Guaranteed intersection-free polygon morphing , 2001, Comput. Graph..

[6]  Reinhard Klein,et al.  An Adaptable Surface Parameterization Method , 2003, IMR.

[7]  Carme Torras,et al.  3D collision detection: a survey , 2001, Comput. Graph..

[8]  Tim Weyrich,et al.  Content‐aware surface parameterization for interactive restoration of historical documents , 2014, Comput. Graph. Forum.

[9]  Bruno Lévy,et al.  Mesh parameterization: theory and practice , 2007, SIGGRAPH Courses.

[10]  David Bommes,et al.  Mixed-integer quadrangulation , 2009, SIGGRAPH '09.

[11]  Cláudio T. Silva,et al.  Bijective maps from simplicial foliations , 2016, ACM Trans. Graph..

[12]  Eitan Grinspun,et al.  Asynchronous contact mechanics , 2009, ACM Trans. Graph..

[13]  Kun Zhou,et al.  Iso-charts: stretch-driven mesh parameterization using spectral analysis , 2004, SGP '04.

[14]  Roi Poranne,et al.  Provably good planar mappings , 2014, ACM Trans. Graph..

[15]  Roi Poranne,et al.  Lifted bijections for low distortion surface mappings , 2014, ACM Trans. Graph..

[16]  Larry L. Schumaker,et al.  Curve and surface design : Saint-Malo 99 , 2000 .

[17]  Konstantin Mischaikow,et al.  Feature-based surface parameterization and texture mapping , 2005, TOGS.

[18]  Pedro V. Sander,et al.  Texture mapping progressive meshes , 2001, SIGGRAPH.

[19]  Yang Liu,et al.  Computing inversion-free mappings by simplex assembly , 2016, ACM Trans. Graph..

[20]  Baining Guo,et al.  Computing locally injective mappings by advanced MIPS , 2015, ACM Trans. Graph..

[21]  Eitan Grinspun,et al.  Robust, efficient, and accurate contact algorithms , 2010 .

[22]  Daniele Panozzo,et al.  LIBIGL: A C++ library for geometry processing without a mesh data structure , 2014 .

[23]  Kai Hormann,et al.  Surface Parameterization: a Tutorial and Survey , 2005, Advances in Multiresolution for Geometric Modelling.

[24]  Jakob Andreas Bærentzen,et al.  Topology-adaptive interface tracking using the deformable simplicial complex , 2012, TOGS.

[25]  Pierre Alliez,et al.  Integer-grid maps for reliable quad meshing , 2013, ACM Trans. Graph..

[26]  Olga Sorkine-Hornung,et al.  Locally Injective Mappings , 2013 .

[27]  Dani Lischinski,et al.  Bounded-distortion piecewise mesh parameterization , 2002, IEEE Visualization, 2002. VIS 2002..

[28]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[29]  Tae-Yong Kim,et al.  Air meshes for robust collision handling , 2015, ACM Trans. Graph..

[30]  Eitan Grinspun,et al.  Speculative parallel asynchronous contact mechanics , 2012, ACM Trans. Graph..

[31]  Yaron Lipman Construction of Injective Mappings Of Meshes , 2013, ArXiv.

[32]  Olga Sorkine-Hornung,et al.  Consistent Volumetric Discretizations Inside Self‐Intersecting Surfaces , 2013, SGP '13.

[33]  K. Hormann,et al.  MIPS: An Efficient Global Parametrization Method , 2000 .

[34]  Craig Gotsman,et al.  Morphing stick figures using optimized compatible triangulations , 2001, Proceedings Ninth Pacific Conference on Computer Graphics and Applications. Pacific Graphics 2001.

[35]  Hang Si,et al.  TetGen, a Delaunay-Based Quality Tetrahedral Mesh Generator , 2015, ACM Trans. Math. Softw..

[36]  Yaron Lipman,et al.  Accelerated quadratic proxy for geometric optimization , 2016, ACM Trans. Graph..

[37]  Scott Schaefer,et al.  Bijective parameterization with free boundaries , 2015, ACM Trans. Graph..

[38]  Michael S. Floater,et al.  Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..

[39]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[40]  Justin Solomon,et al.  Numerical Algorithms - Methods for Computer Vision, Machine Learning, and Graphics , 2015 .

[41]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[42]  Olga Sorkine-Hornung,et al.  Scalable locally injective mappings , 2017, TOGS.

[43]  Michael M. Kazhdan,et al.  Can Mean‐Curvature Flow be Modified to be Non‐singular? , 2012, Comput. Graph. Forum.

[44]  Bruno Lévy,et al.  Least squares conformal maps for automatic texture atlas generation , 2002, ACM Trans. Graph..

[45]  Denis Zorin,et al.  Robust field-aligned global parametrization , 2014, ACM Trans. Graph..