On Ramsey properties of classes with forbidden trees

Let F be a set of relational trees and let Forbh(F) be the class of all structures that admit no homomorphism from any tree in F; all this happens over a fixed finite relational signature $\sigma$. There is a natural way to expand Forbh(F) by unary relations to an amalgamation class. This expanded class, enhanced with a linear ordering, has the Ramsey property.

[1]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[2]  Jan Foniok Homomorphisms and Structural Properties of Relational Systems , 2007, 0710.4477.

[3]  Vojtech Rödl,et al.  The partite construction and ramsey set systems , 1989, Discret. Math..

[4]  Michael Pinsker,et al.  Reducts of Ramsey structures , 2011, AMS-ASL Joint Special Session.

[5]  Jaroslav Nesetril,et al.  Homomorphism and Embedding Universal Structures for Restricted Classes , 2016, J. Multiple Valued Log. Soft Comput..

[6]  Tomás Feder,et al.  The Computational Structure of Monotone Monadic SNP and Constraint Satisfaction: A Study through Datalog and Group Theory , 1999, SIAM J. Comput..

[7]  Jaroslav Nesetril,et al.  Ramsey Classes and Homogeneous Structures , 2005, Combinatorics, Probability and Computing.

[8]  Bernd Voigt,et al.  A short proof of the restricted Ramsey theorem for finite set systems , 1989, J. Comb. Theory, Ser. A.

[9]  Peter Jeavons,et al.  The Complexity of Constraint Languages , 2006, Handbook of Constraint Programming.

[10]  V. Pestov,et al.  Fraïssé Limits, Ramsey Theory, and topological dynamics of automorphism groups , 2003 .

[11]  Albert Atserias,et al.  Decidable Relationships between Consistency Notions for Constraint Satisfaction Problems , 2009, CSL.

[12]  Vojtech Rödl,et al.  Partitions of Finite Relational and Set Systems , 1977, J. Comb. Theory A.

[13]  Jaroslav Nešetřil Ramsey theory , 1996 .

[14]  Jaroslav Nesetril,et al.  Strong Ramsey theorems for Steiner systems , 1987 .

[15]  Julia Böttcher,et al.  Ramsey Properties of Permutations , 2013, Electron. J. Comb..

[16]  Jaroslav Nesetril,et al.  Metric spaces are Ramsey , 2007, Eur. J. Comb..

[17]  Vojtech Rödl,et al.  Ramsey Classes of Set Systems , 1983, J. Comb. Theory, Ser. A.

[18]  J. Folkman Graphs with Monochromatic Complete Subgraphs in Every Edge Coloring , 1970 .

[19]  Andrei A. Bulatov,et al.  Dualities for Constraint Satisfaction Problems , 2008, Complexity of Constraints.

[20]  Jaroslav Nešetřil,et al.  Simple proof of the existence of restricted ramsey graphs by means of a partite construction , 1981, Comb..

[21]  S. Shelah,et al.  Universal Graphs with Forbidden Subgraphs and Algebraic Closure , 1998, math/9809202.

[22]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[23]  Gábor Tardos,et al.  Caterpillar Dualities and Regular Languages , 2012, SIAM J. Discret. Math..

[24]  Vojtech Rödl,et al.  Two Proofs of the Ramsey Property of the Class of Finite Hypergraphs , 1982, Eur. J. Comb..

[25]  Jaroslav Nesetril,et al.  Universal Structures with Forbidden Homomorphisms , 2015, Logic Without Borders.

[26]  Phokion G. Kolaitis On the Expressive Power of Logics on Finite Models , 2007 .

[27]  Xuding Zhu,et al.  Duality and Polynomial Testing of Tree Homomorphisms , 1996 .

[28]  Gábor Tardos,et al.  On infinite-finite tree-duality pairs of relational structures , 2012, ArXiv.

[29]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.