Nonconforming finite-element discretization of convex variational problems

The Lavrentiev gap phenomenon is a well-known effect in the calculus of variations, related to singularities of minimizers. In its presence, conforming finite-element methods are incapable of reaching the energy minimum. By contrast, it is shown in this work that for convex variational problems the nonconforming Crouzeix–Raviart finite-element discretization always converges to the correct minimizer and that the discrete energy converges to the correct limit.

[1]  F. Smithies Linear Operators , 2019, Nature.

[2]  M. Foss,et al.  The Lavrentiev Gap Phenomenon in Nonlinear Elasticity , 2003 .

[3]  J. Ball,et al.  Discontinuous equilibrium solutions and cavitation in nonlinear elasticity , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[4]  Zhiping Li ELEMENT REMOVAL METHOD FOR SINGULAR MINIMIZERS IN PROBLEMS OF HYPERELASTICITY , 1995 .

[5]  Augusto Visintin,et al.  Strong convergence results related to strict convexity , 1984 .

[6]  Adrian J. Lew,et al.  Discontinuous Galerkin methods for non‐linear elasticity , 2006 .

[7]  G. Burton Sobolev Spaces , 2013 .

[8]  G. Knowles,et al.  Finite element approximation to singular minimizers, and applications to cavitation in non-linear elasticity , 1987 .

[9]  G. Buttazzo,et al.  Interpretation of the Lavrentiev phenomenon by relaxation , 1992 .

[10]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[11]  Zhipping Li Element removal method for singular minimizers in variational problems involving Lavrentiev phenomenon , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[12]  Examples of the Lavrentiev Phenomenon with Continuous Sobolev Exponent Dependence , 2003 .

[13]  J. Ball Foundations of Computational Mathematics: Singularities and computation of minimizers for variational problems , 2001 .

[14]  Christoph Ortner,et al.  On the Convergence of Adaptive Non-Conforming Finite Element Methods , 2008 .

[15]  L. Evans Measure theory and fine properties of functions , 1992 .

[16]  John M. Ball,et al.  One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation , 1985 .

[17]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[18]  J. Ball,et al.  A numerical method for detecting singular minimizers , 1987 .

[19]  M. Lavrentieff,et al.  Sur quelques problèmes du calcul des variations , 1927 .

[20]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[21]  Pablo V. Negrón Marrero A numerical method for detecting singular minimizers of multidimensional problems in nonlinear elasticity , 1990 .

[22]  OX St.Giles'Oxford Singularities and Computation of Minimizers for Variational Problems , 2022 .

[23]  Yu Bai,et al.  A TRUNCATION METHOD FOR DETECTING SINGULAR MINIMIZERS INVOLVING THE LAVRENTIEV PHENOMENON , 2006 .

[24]  Dietrich Braess Finite Elements: Introduction , 2007 .

[25]  A. Buffa,et al.  Compact embeddings of broken Sobolev spaces and applications , 2009 .