Recent Progress in High-Speed Silicon-Based Optical Modulators

The evolution of silicon optical modulators is recalled, from the first effect demonstrations to the characterization of high-performance devices integrated in optical waveguides. Among possibilities to achieve optical modulation in silicon-based materials, the carrier depletion effect has demonstrated good capacities. Carrier depletion in Si and SiGe/Si structures has been theoretically and experimentally investigated. Large phase modulation efficiency, low optical loss, and large cutoff frequency are obtained by considering simultaneously optical and electrical structure performances. Integrated Mach-Zehnder interferometers and resonators are compared to convert phase modulation into intensity modulation. Finally, recent results on high-speed and low-loss silicon optical modulator using an asymmetric Mach-Zehnder interferometer are presented. It is based on a p-doped slit embedded in the intrinsic region of a lateral pin diode integrated in a silicon-on-insulator waveguide. This design allows a good overlap between the optical mode and carrier density variations. An insertion loss of 5 dB has been measured with a -3 dB bandwidth of 15 GHz.

[1]  Ivo Rendina,et al.  Thermo-optical modulation at 1.5 mu m in silicon etalon , 1992 .

[2]  D. Marris-Morini,et al.  Recent progress in fast silicon modulators , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[3]  J. Witzens,et al.  Monolithically integrated high-speed CMOS photonic transceivers , 2008, 2008 5th IEEE International Conference on Group IV Photonics.

[4]  Henry I. Smith,et al.  Photonic-bandgap microcavities in optical waveguides , 1997, Nature.

[5]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[6]  Y. Vlasov,et al.  Losses in single-mode silicon-on-insulator strip waveguides and bends. , 2004, Optics express.

[7]  Eric Cassan,et al.  Response time analysis of SiGe∕Si modulation-doped multiple-quantum-well structures for optical modulation , 2004 .

[8]  Paul Crozat,et al.  Metal-semiconductor-metal Ge photodetectors integrated in silicon waveguides , 2008 .

[9]  Francesco G. Della Corte,et al.  Measurement and exploitation of the thermo-optic effect in silicon for light switching in optoelectronic integrated circuits , 2000, Photonics West - Optoelectronic Materials and Devices.

[10]  A. Koster,et al.  Design of a SiGe-Si quantum-well optical modulator , 2003 .

[11]  P. Lalanne,et al.  Short Bragg mirrors with adiabatic modal conversion , 2002 .

[12]  Philippe Lyan,et al.  Low loss and high speed silicon optical modulator based on a lateral carrier depletion structure. , 2008, Optics express.

[13]  M. Morse,et al.  High speed silicon Mach-Zehnder modulator. , 2005, Optics express.

[14]  R Orobtchouk,et al.  Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. , 2003, Optics letters.

[15]  Jurgen Michel,et al.  Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators , 2008 .

[16]  Eric Cassan,et al.  Ultracompact splitter for submicrometer silicon-on-insulator rib waveguides. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  L. Vivien,et al.  Design Optimization of a SiGe/Si Quantum-Well Optical Modulator , 2008, Journal of Lightwave Technology.

[18]  Paul Crozat,et al.  Ultrahigh speed germanium-on-silicon-on-insulator photodetectors for 1.31 and 1.55μm operation , 2005 .

[19]  R Baets,et al.  Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs. , 2006, Optics express.

[20]  Richard A. Soref,et al.  Kramers-Kronig Analysis Of Electro-Optical Switching In Silicon , 1987, Other Conferences.

[21]  D. Miller,et al.  Optical interconnects to silicon , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[22]  D. Kucharski,et al.  A 1550 nm, 10 Gbps optical modulator with integrated driver in 130 nm CMOS , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[23]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[24]  M. Berroth,et al.  Ge-on-Si vertical incidence photodiodes with 39-GHz bandwidth , 2005, IEEE Photonics Technology Letters.

[25]  Juthika Basak,et al.  40 Gbit/s silicon optical modulator for highspeed applications , 2007 .

[26]  O. Hansen,et al.  Strained silicon as a new electro-optic material , 2006, Nature.

[27]  D. Miller,et al.  Strong quantum-confined Stark effect in germanium quantum-well structures on silicon , 2005, Nature.

[28]  Sebania Libertino,et al.  Design and fabrication of integrated Si-based optoelectronic devices , 2000 .

[29]  Xavier Le Roux,et al.  Optical modulation by carrier depletion in a silicon PIN diode. , 2006, Optics express.

[30]  L. Sekaric,et al.  Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator. , 2007, Optics express.

[31]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[32]  G. Masini,et al.  A 1550nm, 10Gbps monolithic optical receiver in 130nm CMOS with integrated Ge waveguide photodetector , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[33]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[34]  Qianfan Xu,et al.  High Speed Carrier Injection 18 Gb/s Silicon Micro-ring Electro-optic Modulator , 2007, LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings.

[35]  B. Garrido,et al.  Er-Coupled Si Nanocluster Waveguide , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[37]  M. Morse,et al.  31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate. , 2007, Optics express.

[38]  Anatole Lupu,et al.  Experimental evidence for index modulation by carrier depletionin SiGe∕Si multiple quantum well structures , 2004 .

[39]  P. Dumon,et al.  Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology , 2005, Journal of Lightwave Technology.

[40]  Anatole Lupu,et al.  Ultralow loss successive divisions using silicon-on-insulator microwaveguides , 2005 .

[41]  X. Le Roux,et al.  Germanium photodetector integrated in a Silicon-On-Insulator microwaveguide , 2007, 2007 4th IEEE International Conference on Group IV Photonics.

[42]  P. Crozat,et al.  42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide. , 2009, Optics express.

[43]  J. Bowers,et al.  Hybrid silicon evanescent devices , 2007 .