Complicated dynamics in a memristor-based RLC circuit

As the fourth basic circuit element, the memristor is usually employed to design chaotic circuit for the special electrical properties. This paper introduces a memristor-based RLC oscillation circuit with fourth-order differential equation. Basic dynamical properties of the system are revealed by analyzing phase portrait, time-domain waveform, Poincare map, equilibrium point, bifurcation diagram and Lyapunov exponent. Specially, coexisting attractor with the variation of initial value is explored in this system, which means the multi-stability arises. And it is also found that there exists complicated transient dynamical behavior for some initial conditions and parameters, which completely differs from the existed modes of transient chaos and transient period.

[1]  Kehui Sun,et al.  Fractional-order simplest memristor-based chaotic circuit with new derivative , 2018 .

[2]  K. Thamilmaran,et al.  Implementation and study of the nonlinear dynamics of a memristor-based Duffing oscillator , 2017 .

[3]  Viet-Thanh Pham,et al.  Using chaotic artificial neural networks to model memory in the brain , 2017, Commun. Nonlinear Sci. Numer. Simul..

[4]  Sundarapandian Vaidyanathan,et al.  A novel memristive time–delay chaotic system without equilibrium points , 2016 .

[5]  L. Chua Memristor-The missing circuit element , 1971 .

[6]  Guangyi Wang,et al.  Initial condition-dependent dynamics and transient period in memristor-based hypogenetic jerk system with four line equilibria , 2018, Commun. Nonlinear Sci. Numer. Simul..

[7]  Bocheng Bao,et al.  Extreme multistability in a memristive circuit , 2016 .

[8]  Fang Yuan,et al.  Dynamical Behaviors of a TiO2Memristor Oscillator , 2013 .

[9]  C. K. Michael Tse,et al.  Application of Memristor-Based Controller for Loop Filter Design in Charge-Pump Phase-Locked Loops , 2013, Circuits Syst. Signal Process..

[10]  Yang Xu,et al.  Exploration of Muscle Fatigue Effects in Bioinspired Robot Learning from sEMG Signals , 2018, Complex..

[11]  Hilaire Bertrand Fotsin,et al.  Dynamics, Analysis and Implementation of a Multiscroll Memristor-Based Chaotic Circuit , 2016, Int. J. Bifurc. Chaos.

[12]  Zbigniew Galias,et al.  Automatized Search for Complex Symbolic Dynamics with Applications in the Analysis of a Simple Memristor Circuit , 2014, Int. J. Bifurc. Chaos.

[13]  Bocheng Bao,et al.  Numerical and experimental confirmations of quasi-periodic behavior and chaotic bursting in third-order autonomous memristive oscillator , 2018 .

[14]  Ali H. Nayfeh,et al.  Bifurcations and chaos in parametrically excited single-degree-of-freedom systems , 1990 .

[15]  Zhouchao Wei,et al.  Dynamics and delayed feedback control for a 3D jerk system with hidden attractor , 2015 .

[16]  Wang Guangyi,et al.  Dynamical Behaviors of a TiO2 Memristor Oscillator , 2013 .

[17]  Sara Dadras,et al.  Analysis of a new 3D smooth autonomous system with different wing chaotic attractors and transient chaos , 2010 .

[18]  Jun Ma,et al.  Model of electrical activity in a neuron under magnetic flow effect , 2016 .

[19]  Fuhong Min,et al.  Multistability analysis, circuit implementations and application in image encryption of a novel memristive chaotic circuit , 2017, Nonlinear Dynamics.

[20]  Jacques Kengne,et al.  Coexistence of Chaos with Hyperchaos, Period-3 Doubling Bifurcation, and Transient Chaos in the Hyperchaotic Oscillator with Gyrators , 2015, Int. J. Bifurc. Chaos.

[21]  Hilaire Bertrand Fotsin,et al.  Coexistence of Multiple Attractors, Metastable Chaos and Bursting Oscillations in a Multiscroll Memristive Chaotic Circuit , 2017, Int. J. Bifurc. Chaos.

[22]  Shukai Duan,et al.  Memristive pulse coupled neural network with applications in medical image processing , 2017, Neurocomputing.

[23]  Leon O. Chua,et al.  Memristor oscillators , 2008, Int. J. Bifurc. Chaos.

[24]  Qiang Xu,et al.  A Simple memristor Chaotic Circuit with Complex Dynamics , 2011, Int. J. Bifurc. Chaos.

[25]  Marius-F. Danca,et al.  Hidden transient chaotic attractors of Rabinovich–Fabrikant system , 2016, 1604.04055.

[26]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[27]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[28]  Lin Teng,et al.  Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial , 2014, Nonlinear Dynamics.

[29]  Ling Zhou,et al.  Various Attractors, Coexisting Attractors and Antimonotonicity in a Simple Fourth-Order Memristive Twin-T Oscillator , 2018, Int. J. Bifurc. Chaos.