Analysis of regulatory protease sequences identified through bioinformatic data mining of the Schistosoma mansoni genome

BackgroundNew chemotherapeutic agents against Schistosoma mansoni, an etiological agent of human schistosomiasis, are a priority due to the emerging drug resistance and the inability of current drug treatments to prevent reinfection. Proteases have been under scrutiny as targets of immunological or chemotherapeutic anti-Schistosoma agents because of their vital role in many stages of the parasitic life cycle. Function has been established for only a handful of identified S. mansoni proteases, and the vast majority of these are the digestive proteases; very few of the conserved classes of regulatory proteases have been identified from Schistosoma species, despite their vital role in numerous cellular processes. To that end, we identified protease protein coding genes from the S. mansoni genome project and EST library.ResultsWe identified 255 protease sequences from five catalytic classes using predicted proteins of the S. mansoni genome. The vast majority of these show significant similarity to proteins in KEGG and the Conserved Domain Database. Proteases include calpains, caspases, cytosolic and mitochondrial signal peptidases, proteases that interact with ubiquitin and ubiquitin-like molecules, and proteases that perform regulated intramembrane proteolysis. Comparative analysis of classes of important regulatory proteases find conserved active site domains, and where appropriate, signal peptides and transmembrane helices. Phylogenetic analysis provides support for inferring functional divergence among regulatory aspartic, cysteine, and serine proteases.ConclusionNumerous proteases are identified for the first time in S. mansoni. We characterized important regulatory proteases and focus analysis on these proteases to complement the growing knowledge base of digestive proteases. This work provides a foundation for expanding knowledge of proteases in Schistosoma species and examining their diverse function and potential as targets for new chemotherapies.

[1]  K. Davies,et al.  Downregulation of the human Lon protease impairs mitochondrial structure and function and causes cell death. , 2005, Free radical biology & medicine.

[2]  C. Southan A genomic perspective on human proteases , 2001, FEBS letters.

[3]  Zhu Chen,et al.  New Perspectives on Host-Parasite Interplay by Comparative Transcriptomic and Proteomic Analyses of Schistosoma japonicum , 2006, PLoS pathogens.

[4]  A. Kohn,et al.  Specific sites in the Beta Interaction Domain of a schistosome Ca2+ channel β subunit are key to its role in sensitivity to the anti-schistosomal drug praziquantel , 2003, Parasitology.

[5]  A. Loukas,et al.  Digestive proteases of blood-feeding nematodes. , 2003, Trends in parasitology.

[6]  T. Day,et al.  The metalloprotease inhibitor 1,10-phenanthroline affects Schistosoma mansoni motor activity, egg laying and viability , 1998, Parasitology.

[7]  G. von Heijne,et al.  Signal peptidases in prokaryotes and eukaryotes--a new protease family. , 1992, Trends in biochemical sciences.

[8]  P. Loke,et al.  Proteases in parasitic diseases. , 2006, Annual review of pathology.

[9]  J. McKerrow,et al.  Schistosome Invasion of Human Skin and Degradation of Dermal Elastin Are Mediated by a Single Serine Protease* , 2000, The Journal of Biological Chemistry.

[10]  T. Day,et al.  Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villagers. , 1999, The American journal of tropical medicine and hygiene.

[11]  M. Brunori,et al.  The anti-schistosomal drug praziquantel is an adenosine antagonist , 2007, Parasitology.

[12]  K. H. Wolfe,et al.  Proteinases and associated genes of parasitic helminths. , 1999, Advances in parasitology.

[13]  X. Puente,et al.  Human and mouse proteases: a comparative genomic approach , 2003, Nature Reviews Genetics.

[14]  S. Urban Rhomboid proteins: conserved membrane proteases with divergent biological functions. , 2006, Genes & development.

[15]  P. Vandenabeele,et al.  Alice in caspase land. A phylogenetic analysis of caspases from worm to man , 2002, Cell Death and Differentiation.

[16]  M. Wolfe,et al.  Intramembrane Proteolysis: Theme and Variations , 2004, Science.

[17]  M. Sajid,et al.  Blood 'n' guts: an update on schistosome digestive peptidases. , 2004, Trends in parasitology.

[18]  D. McManus Prospects for development of a transmission blocking vaccine against Schistosoma japonicum , 2005, Parasite immunology.

[19]  M. Freeman,et al.  Functional and evolutionary implications of enhanced genomic analysis of rhomboid intramembrane proteases. , 2007, Genome research.

[20]  G. Pellecchia,et al.  Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. , 2000, Molecular cell.

[21]  Benjamin A. Shoemaker,et al.  CDD: a database of conserved domain alignments with links to domain three-dimensional structure , 2002, Nucleic Acids Res..

[22]  A. Krogh,et al.  Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. , 2001, Journal of molecular biology.

[23]  A. Hotson,et al.  Cysteine proteases in phytopathogenic bacteria: identification of plant targets and activation of innate immunity. , 2004, Current opinion in plant biology.

[24]  John B. Anderson,et al.  CDD: a Conserved Domain Database for protein classification , 2004, Nucleic Acids Res..

[25]  J. Leunissen,et al.  Subtilases: The superfamily of subtilisin‐like serine proteases , 1997, Protein science : a publication of the Protein Society.

[26]  J. McKerrow,et al.  Invasion of skin by Schistosoma cercariae. , 2002, Trends in parasitology.

[27]  M. Wolfe,et al.  Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Basson,et al.  Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[30]  L. Chitsulo,et al.  The global status of schistosomiasis and its control. , 2000, Acta tropica.

[31]  M. Soares,et al.  Transcriptome analysis of the acoelomate human parasite Schistosoma mansoni , 2003, Nature Genetics.

[32]  C. Mello,et al.  The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  B. Martoglio,et al.  Identification of Signal Peptide Peptidase, a Presenilin-Type Aspartic Protease , 2002, Science.

[34]  Ze-Guang Han,et al.  Schistosome transcriptomes: new insights into the parasite and schistosomiasis. , 2004, Trends in molecular medicine.

[35]  Yaoqi Zhou,et al.  Predicting the topology of transmembrane helical proteins using mean burial propensity and a hidden-Markov-model-based method , 2003 .

[36]  P. Ashton,et al.  Identification of Novel Proteases and Immunomodulators in the Secretions of Schistosome Cercariae That Facilitate Host Entry *S , 2006, Molecular & Cellular Proteomics.

[37]  Peer Bork,et al.  SMART 5: domains in the context of genomes and networks , 2005, Nucleic Acids Res..

[38]  E. Rugarli,et al.  The m-AAA Protease Defective in Hereditary Spastic Paraplegia Controls Ribosome Assembly in Mitochondria , 2005, Cell.

[39]  M. Krem,et al.  Molecular markers of serine protease evolution , 2001, The EMBO journal.

[40]  H. Walczak,et al.  Caspases : their role in cell death and cell survival , 2002 .

[41]  M. Ehrmann,et al.  Proteolysis as a regulatory mechanism. , 2004, Annual review of genetics.

[42]  Robert C. Edgar,et al.  MUSCLE: a multiple sequence alignment method with reduced time and space complexity , 2004, BMC Bioinformatics.

[43]  M. Krem,et al.  The C-terminal Sequence Encodes Function in Serine Proteases* , 1999, The Journal of Biological Chemistry.

[44]  B. Bowerman,et al.  Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early C. elegans embryogenesis , 2006, Development.

[45]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[46]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[47]  Shai Shaham,et al.  The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme , 1993, Cell.

[48]  J. Dalton,et al.  Dipeptidyl peptidase I and III activities of adult schistosomes. , 1999, Parasitology.

[49]  C. Shoemaker,et al.  Optimizing gene suppression in schistosomes using RNA interference. , 2007, Molecular and biochemical parasitology.

[50]  M. Dresden,et al.  Leucine aminopeptidase and hatching of Schistosoma mansoni eggs. , 1986, Journal of Parasitology.

[51]  A. Hotson,et al.  Xanthomonas type III effector XopD targets SUMO‐conjugated proteins in planta , 2003, Molecular microbiology.

[52]  P. Ashton,et al.  The 20S proteasome of Schistosoma mansoni: A proteomic analysis , 2007, Proteomics.

[53]  S. Brunak,et al.  Improved prediction of signal peptides: SignalP 3.0. , 2004, Journal of molecular biology.

[54]  F. Melchior,et al.  Concepts in sumoylation: a decade on , 2007, Nature Reviews Molecular Cell Biology.

[55]  Akiyasu C. Yoshizawa,et al.  KAAS: an automatic genome annotation and pathway reconstruction server , 2007, Environmental health perspectives.

[56]  Shai Shaham,et al.  Death without caspases, caspases without death. , 2004, Trends in cell biology.

[57]  Joseph L Goldstein,et al.  Regulated Intramembrane Proteolysis A Control Mechanism Conserved from Bacteria to Humans , 2000, Cell.

[58]  N. Grishin,et al.  Site‐2 protease regulated intramembrane proteolysis: Sequence homologs suggest an ancient signaling cascade , 2006, Protein science : a publication of the Protein Society.

[59]  Enrico Di Cera,et al.  Substrate Recognition Drives the Evolution of Serine Proteases* , 2002, The Journal of Biological Chemistry.

[60]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[61]  P. Cavadini,et al.  Mitochondrial processing peptidases. , 2002, Biochimica et biophysica acta.

[62]  T. Kumagai,et al.  Vaccination with Calpain Induces a Th1-Biased Protective Immune Response against Schistosoma japonicum , 2001, Infection and Immunity.

[63]  L. Chitsulo,et al.  The global epidemiological situation of schistosomiasis and new approaches to control and research. , 2002, Acta tropica.

[64]  P. Meier,et al.  IAP degradation: decisive blow or altruistic sacrifice? , 2002, Trends in cell biology.

[65]  Jinkui Yang,et al.  A neutral protease from Bacillus nematocida, another potential virulence factor in the infection against nematodes , 2006, Archives of Microbiology.

[66]  S. Brunak,et al.  SHORT COMMUNICATION Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites , 1997 .

[67]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[68]  J. Bell,et al.  HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C , 1998, Nature.

[69]  Neil D. Rawlings,et al.  MEROPS: the peptidase database , 2009, Nucleic Acids Res..

[70]  B. Turk Targeting proteases: successes, failures and future prospects , 2006, Nature Reviews Drug Discovery.

[71]  T. Langer,et al.  Membrane protein degradation by AAA proteases in mitochondria. , 2002, Biochimica et biophysica acta.

[72]  D. Goldberg,et al.  Biological roles of proteases in parasitic protozoa. , 2002, Annual review of biochemistry.

[73]  M. Barnes,et al.  Bioinformatics for geneticists. , 2003 .

[74]  Jan Dvorák,et al.  A Multienzyme Network Functions in Intestinal Protein Digestion by a Platyhelminth Parasite* , 2006, Journal of Biological Chemistry.

[75]  M. Sajid,et al.  Schistosomiasis Mansoni: Novel Chemotherapy Using a Cysteine Protease Inhibitor , 2007, PLoS medicine.

[76]  John P. Overington,et al.  The genome of the blood fluke Schistosoma mansoni , 2009, Nature.

[77]  J. Dalton,et al.  Proteases of trematodes. , 1997 .

[78]  P. Brindley,et al.  RNA interference of Schistosoma mansoni cathepsin D, the apical enzyme of the hemoglobin proteolysis cascade. , 2008, Molecular and biochemical parasitology.

[79]  M. Dasso,et al.  Modification in reverse: the SUMO proteases. , 2007, Trends in biochemical sciences.