Navigating the Solid Form Landscape with Structural Informatics

[1]  Peter T. A. Galek,et al.  Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications. , 2014, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[2]  Frank H. Allen,et al.  The Cambridge Structural Database in retrospect and prospect. , 2014, Angewandte Chemie.

[3]  Tjelvar S. G. Olsson,et al.  Evaluation of molecular crystal structures using Full Interaction Maps , 2013 .

[4]  Yuriy A. Abramov,et al.  Current Computational Approaches to Support Pharmaceutical Solid Form Selection , 2013 .

[5]  A. Powell,et al.  Crystal design approaches for the synthesis of paracetamol co-crystals , 2012 .

[6]  Robin Taylor,et al.  Validating and Understanding Ring Conformations Using Small Molecule Crystallographic Data , 2012, J. Chem. Inf. Model..

[7]  Colin R. Groom,et al.  One in half a million: a solid form informatics study of a pharmaceutical crystal structure , 2012 .

[8]  Claire S. Adjiman,et al.  Towards crystal structure prediction of complex organic compounds – a report on the fifth blind test , 2011, Acta crystallographica. Section B, Structural science.

[9]  Sarah L Price,et al.  Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction. , 2011, International journal of pharmaceutics.

[10]  Patrick McCabe,et al.  New software for statistical analysis of Cambridge Structural Database data , 2011, Journal of applied crystallography.

[11]  Miranda L. Cheney,et al.  Coformer selection in pharmaceutical cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. , 2011, Journal of pharmaceutical sciences.

[12]  F. Pammolli,et al.  The productivity crisis in pharmaceutical R&D , 2011, Nature Reviews Drug Discovery.

[13]  H. Edwards,et al.  Identification of a new cocrystal of citric acid and paracetamol of pharmaceutical relevance , 2011 .

[14]  Keith R Horspool,et al.  Development of a targeted polymorph screening approach for a complex polymorphic and highly solvating API. , 2010, Journal of pharmaceutical sciences.

[15]  P. Willett,et al.  The scientific impact of the Cambridge Structural Database: a citation‐based study , 2010 .

[16]  Frank H. Allen,et al.  Truly prospective prediction: inter- and intramolecular hydrogen bonding , 2010 .

[17]  Oliver Korb,et al.  Prediction of framework-guest systems using molecular docking. , 2010, Chemical communications.

[18]  B. Kuhn,et al.  A Medicinal Chemist’s Guide to Molecular Interactions , 2010, Journal of medicinal chemistry.

[19]  Charles C. Persinger,et al.  How to improve R&D productivity: the pharmaceutical industry's grand challenge , 2010, Nature Reviews Drug Discovery.

[20]  B. Kuhn,et al.  Intramolecular hydrogen bonding in medicinal chemistry. , 2010, Journal of medicinal chemistry.

[21]  Peter T. A. Galek,et al.  Knowledge-based H-bond prediction to aid experimental polymorph screening , 2009 .

[22]  Y. Abramov,et al.  The Challenges of Developing an API Crystallization Process for a Complex Polymorphic and Highly Solvating System. Part I , 2009 .

[23]  William Jones,et al.  Improving Mechanical Properties of Crystalline Solids by Cocrystal Formation: New Compressible Forms of Paracetamol , 2009 .

[24]  O. Rascol,et al.  Rotigotine transdermal delivery for the treatment of Parkinson's disease , 2009 .

[25]  Peter T. A. Galek,et al.  Persistent hydrogen bonding in polymorphic crystal structures. , 2009, Acta crystallographica. Section B, Structural science.

[26]  László Fábián,et al.  Cambridge Structural Database Analysis of Molecular Complementarity in Cocrystals , 2009 .

[27]  A. Bak,et al.  Physicochemical Properties of Pharmaceutical Co-Crystals: A Case Study of Ten AMG 517 Co-Crystals , 2008 .

[28]  Sekhar Surapaneni,et al.  The co-crystal approach to improve the exposure of a water-insoluble compound: AMG 517 sorbic acid co-crystal characterization and pharmacokinetics. , 2008, Journal of pharmaceutical sciences.

[29]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[30]  B. Kuhn,et al.  Small Molecule Conformational Preferences Derived from Crystal Structure Data. A Medicinal Chemistry Focused Analysis , 2008, J. Chem. Inf. Model..

[31]  Peter T. A. Galek,et al.  Knowledge-based model of hydrogen-bonding propensity in organic crystals. , 2007, Acta crystallographica. Section B, Structural science.

[32]  Aeri Park,et al.  The salt-cocrystal continuum: the influence of crystal structure on ionization state. , 2007, Molecular pharmaceutics.

[33]  W. Motherwell,et al.  Organic crystal hydrates : what are the important factors for formation , 2007 .

[34]  David K. Henderson,et al.  Effect of pressure on the crystal structure of salicylaldoxime-I, and the structure of salicylaldoxime-II at 5.93 GPa. , 2006, Acta crystallographica. Section B, Structural science.

[35]  William Jones,et al.  Prediction and observation of isostructurality induced by solvent incorporation in multicomponent crystals. , 2006, Journal of the American Chemical Society.

[36]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[37]  Peddy Vishweshwar,et al.  Pharmaceutical co-crystals. , 2006, Journal of pharmaceutical sciences.

[38]  Frank H. Allen,et al.  Knowledge-based approaches to crystal design , 2006 .

[39]  Ich Harmonised,et al.  INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE , 2006 .

[40]  Christer B. Aakeröy,et al.  Building co-crystals with molecular sense and supramolecular sensibility , 2005 .

[41]  W. Jones,et al.  Hydrate formation in NH+-containing salts of pharmaceutically acceptable anions: A CSD survey , 2005 .

[42]  Abu T M Serajuddin,et al.  Trends in solubility of polymorphs. , 2005, Journal of pharmaceutical sciences.

[43]  S. Bates,et al.  Local Structure in Amorphous Phases of Piroxicam from Powder X-ray Diffractometry , 2005 .

[44]  M. Mascal,et al.  Water oligomers in crystal hydrates--what's news and what isn't? , 2005, Angewandte Chemie.

[45]  Jie Luo,et al.  Retrieval of Crystallographically-Derived Molecular Geometry Information , 2004, J. Chem. Inf. Model..

[46]  Robin Taylor,et al.  Research applications of the Cambridge Structural Database (CSD). , 2004, Chemical Society reviews.

[47]  Michael J. Zaworotko,et al.  Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? , 2003, Chemical communications.

[48]  J. Bauer,et al.  Ritonavir: An Extraordinary Example of Conformational Polymorphism , 2001, Pharmaceutical Research.

[49]  J. Chisholm,et al.  Extended motifs from water and chemical functional groups in organic molecular crystals , 2003 .

[50]  F. Vrečer,et al.  Characterization of piroxicam crystal modifications. , 2003, International journal of pharmaceutics.

[51]  Michael J. Cima,et al.  Elucidation of crystal form diversity of the HIV protease inhibitor ritonavir by high-throughput crystallization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Allan,et al.  The formation of paracetamol (acetaminophen) adducts with hydrogen-bond acceptors. , 2002, Acta crystallographica. Section B, Structural science.

[53]  Frank H Allen,et al.  Applications of the Cambridge Structural Database in organic chemistry and crystal chemistry. , 2002, Acta crystallographica. Section B, Structural science.

[54]  Robin Taylor,et al.  New software for searching the Cambridge Structural Database and visualizing crystal structures. , 2002, Acta crystallographica. Section B, Structural science.

[55]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[56]  C. Aakeröy,et al.  Syntheses and Crystal Structures of New “Extended” Building Blocks for Crystal Engineering: (Pyridylmethylene)aminoacetophenone Oxime Ligands , 2001 .

[57]  S. Chemburkar,et al.  Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development , 2000 .

[58]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[59]  Robin Taylor,et al.  IsoStar: A library of information about nonbonded interactions , 1997, J. Comput. Aided Mol. Des..

[60]  Christer B. Aakeröy,et al.  Crystal engineering : Strategies and architectures , 1997 .

[61]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[62]  Margaret C. Etter,et al.  Hydrogen bonds as design elements in organic chemistry , 1991 .

[63]  S. Reutzel,et al.  Hydrogen Bond Directed Cocrystallization and Molecular Recognition Properties of Acyclic Imides , 1991 .

[64]  F. Vrecˇer,et al.  Investigation of piroxicam polymorphism , 1991 .

[65]  M. C. Etter Encoding and decoding hydrogen-bond patterns of organic compounds , 1990 .

[66]  J. Bernstein,et al.  Graph-set analysis of hydrogen-bond patterns in organic crystals. , 1990, Acta crystallographica. Section B, Structural science.

[67]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .