Nomograms Predicting Progression-Free Survival, Overall Survival, and Pelvic Recurrence in Locally Advanced Cervical Cancer Developed From an Analysis of Identifiable Prognostic Factors in Patients From NRG Oncology/Gynecologic Oncology Group Randomized Trials of Chemoradiotherapy.

PURPOSE To evaluate the prognostic factors in locally advanced cervical cancer limited to the pelvis and develop nomograms for 2-year progression-free survival (PFS), 5-year overall survival (OS), and pelvic recurrence. PATIENTS AND METHODS We retrospectively reviewed 2,042 patients with locally advanced cervical carcinoma enrolled onto Gynecologic Oncology Group clinical trials of concurrent cisplatin-based chemotherapy and radiotherapy. Nomograms for 2-year PFS, five-year OS, and pelvic recurrence were created as visualizations of Cox proportional hazards regression models. The models were validated by bootstrap-corrected, relatively unbiased estimates of discrimination and calibration. RESULTS Multivariable analysis identified prognostic factors including histology, race/ethnicity, performance status, tumor size, International Federation of Gynecology and Obstetrics stage, tumor grade, pelvic node status, and treatment with concurrent cisplatin-based chemotherapy. PFS, OS, and pelvic recurrence nomograms had bootstrap-corrected concordance indices of 0.62, 0.64, and 0.73, respectively, and were well calibrated. CONCLUSION Prognostic factors were used to develop nomograms for 2-year PFS, 5-year OS, and pelvic recurrence for locally advanced cervical cancer clinically limited to the pelvis treated with concurrent cisplatin-based chemotherapy and radiotherapy. These nomograms can be used to better estimate individual and collective outcomes.

[1]  D. Cox Regression Models and Life-Tables , 1972 .

[2]  B N Bundy,et al.  Concurrent cisplatin-based radiotherapy and chemotherapy for locally advanced cervical cancer. , 1999, The New England journal of medicine.

[3]  H. B. Mann,et al.  On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other , 1947 .

[4]  B. Monk,et al.  Randomized comparison of weekly cisplatin or protracted venous infusion of fluorouracil in combination with pelvic radiation in advanced cervix cancer: a gynecologic oncology group study. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  J. Lawless,et al.  Efficient Screening of Nonnormal Regression Models , 1978 .

[6]  K. Pearson On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such that it Can be Reasonably Supposed to have Arisen from Random Sampling , 1900 .

[7]  B N Bundy,et al.  Randomized comparison of fluorouracil plus cisplatin versus hydroxyurea as an adjunct to radiation therapy in stage IIB-IVA carcinoma of the cervix with negative para-aortic lymph nodes: a Gynecologic Oncology Group and Southwest Oncology Group study. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  P J Eifel,et al.  Pelvic radiation with concurrent chemotherapy compared with pelvic and para-aortic radiation for high-risk cervical cancer. , 1999, The New England journal of medicine.

[9]  E. Kaplan,et al.  Nonparametric Estimation from Incomplete Observations , 1958 .

[10]  B. Monk,et al.  Phase III randomized trial of weekly cisplatin and irradiation versus cisplatin and tirapazamine and irradiation in stages IB2, IIA, IIB, IIIB, and IVA cervical carcinoma limited to the pelvis: a Gynecologic Oncology Group study. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  F. Hoebers,et al.  Phase III trial to evaluate the efficacy of maintaining hemoglobin levels above 12.0 g/dL with erythropoietin vs above 10.0 g/dL without erythropoietin in anemic patients receiving concurrent radiation and cisplatin for cervical cancer. , 2008, Gynecologic oncology.

[12]  P Grigsby,et al.  Concurrent chemotherapy and pelvic radiation therapy compared with pelvic radiation therapy alone as adjuvant therapy after radical surgery in high-risk early-stage cancer of the cervix. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[13]  N. Abu-Rustum,et al.  Compliance with and acute hematologic toxic effects of chemoradiation in indigent women with cervical cancer. , 2001, Gynecologic oncology.

[14]  Daniel B. Mark,et al.  TUTORIAL IN BIOSTATISTICS MULTIVARIABLE PROGNOSTIC MODELS: ISSUES IN DEVELOPING MODELS, EVALUATING ASSUMPTIONS AND ADEQUACY, AND MEASURING AND REDUCING ERRORS , 1996 .

[15]  P. Disaia,et al.  Carcinoma of the cervix treated with radiation therapy I. A multi‐variate analysis of prognostic variables in the gynecologic oncology group , 1991, Cancer.

[16]  B. Sevin,et al.  Prospective surgical-pathological study of disease-free interval in patients with stage IB squamous cell carcinoma of the cervix: a Gynecologic Oncology Group study. , 1990, Gynecologic oncology.

[17]  B N Bundy,et al.  Cisplatin, radiation, and adjuvant hysterectomy compared with radiation and adjuvant hysterectomy for bulky stage IB cervical carcinoma. , 1999, The New England journal of medicine.

[18]  Chao-yuan Huang,et al.  Outcome analysis of cervical adenosquamous carcinoma compared with adenocarcinoma , 2012, Acta obstetricia et gynecologica Scandinavica.

[19]  F. Harrell,et al.  Evaluating the yield of medical tests. , 1982, JAMA.

[20]  Karl Pearson F.R.S. X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling , 2009 .