HYDROTHERMAL FORMATION OF CLAY-CARBONATE ALTERATION ASSEMBLAGES IN THE

Abstract The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has returned observations of the Nili Fossae region indicating the presence of Mg-carbonate in small (

[1]  E. Shock,et al.  A geochemical model for the formation of hydrothermal carbonates on Mars , 1995, Nature.

[2]  C. McKay,et al.  A model for the evolution of CO2 on Mars. , 1994, Icarus.

[3]  B. Jakosky,et al.  Mars atmosphere loss and isotopic fractionation by solar-wind-induced sputtering and photochemical escape , 1994 .

[4]  A. Zent,et al.  The photochemical stability of carbonates on Mars. , 2006, Astrobiology.

[5]  David I. Groves,et al.  Geochemical Mass-Transfer Patterns as Indicators of the Architecture of a Complete Volcanic-Hosted Massive Sulfide Hydrothermal Alteration System, Panorama District, Pilbara, Western Australia , 2001 .

[6]  S. Dunagan,et al.  The MARTE VNIR imaging spectrometer experiment: design and analysis. , 2008, Astrobiology.

[7]  T. Encrenaz,et al.  The 2.4– spectrum of Mars observed with the infrared space observatory , 2000 .

[8]  Raymond E. Arvidson,et al.  Identification of Carbonate-Rich Outcrops on Mars by the Spirit Rover , 2010, Science.

[9]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[10]  M. Donaldson Redistribution of ore elements during serpentinization and talc-carbonate alteration of some Archean dunites, Western Australia , 1981 .

[11]  R. Clark,et al.  New Secondary Minerals Detected by MRO CRISM and Their Geologic Settings: Kaolinite, Chlorite, Illite/Muscovite, and the Possibility of Serpentine or Carbonate in Nili Fossae , 2007 .

[12]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 2. Aqueous alteration of the crust , 2007 .

[13]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[14]  U. Schade,et al.  Measurements and Calculations for Estimating the Spectrometric Detection Limit for Carbonates in Martian Soil , 1996 .

[15]  S. Murchie,et al.  Geologic setting of serpentine deposits on Mars , 2010 .

[16]  J. Welhan Origins of methane in hydrothermal systems , 1988 .

[17]  R. W. Griffiths,et al.  Melting in an Archaean mantle plume: heads it's basalts, tails it's komatiites , 1989, Nature.

[18]  S. J. Sutley,et al.  USGS Digital Spectral Library splib06a , 2007 .

[19]  G. Neukum,et al.  Mineralogy of the Nili Fossae region with OMEGA/Mars Express data: 1. Ancient impact melt in the Isidis Basin and implications for the transition from the Noachian to Hesperian , 2007 .

[20]  M. Walter,et al.  Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia , 1980, Nature.

[21]  T. Encrenaz,et al.  Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data , 2006, Science.

[22]  J. T. O'Connor Mineral stability at the Martian surface , 1968 .

[23]  J. Pollack,et al.  Spectroscopy of Mars from 2.04 to 2.44μm during the 1993 Opposition: Absolute Calibration and Atmospheric vs Mineralogic Origin of Narrow Absorption Features , 1994 .

[24]  T. Hiroi,et al.  Recognition of minor constituents in reflectance spectra of Allan Hills 84001 chips and the importance for remote sensing on Mars , 1998 .

[25]  C. Oze,et al.  Have olivine, will gas: Serpentinization and the abiogenic production of methane on Mars , 2005 .

[26]  M. V. Kranendonk,et al.  Geology and Tectonic Evolution of the Archean North Pilbara Terrain,Pilbara Craton, Western Australia , 2002 .

[27]  Y. Isozaki,et al.  Carbon isotopes and petrography of kerogens in ~ 3.5-Ga hydrothermal silica dikes in the North Pole area, Western Australia , 2004 .

[28]  G. Marion,et al.  THE ROLE OF CARBONATES IN THE EVOLUTION OF EARLY MARTIAN OCEANS , 1999 .

[29]  David L. Bish,et al.  Field deployment of a portable X-ray diffraction/X-ray flourescence instrument on Mars analog terrain , 2005, Powder Diffraction.

[30]  H. Kieffer,et al.  Carbonate formation in Marslike environments , 1978 .

[31]  A. Treiman,et al.  Hydrothermal Origin for Carbonate Globules in Martian Meteorite ALH84001: A Terrestrial Analogue from Spitsbergen (Norway) , 2002 .

[32]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[33]  Adrian J. Brown Spectral curve fitting for automatic hyperspectral data analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[34]  T. Hiroi,et al.  Spectroscopic analysis of Martian meteorite Allan Hills 84001 powder and applications for spectral identification of minerals and other soil components on Mars , 1998 .

[35]  A. Brown,et al.  Hydrothermal alteration at the Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia , 2006, 1401.6911.

[36]  Carbonate and sulfate minerals in the Chassigny meteorite , 1991 .

[37]  M. Schaefer Aqueous geochemistry on early Mars. , 1993, Geochimica et cosmochimica acta.

[38]  Michael D. Smith,et al.  Strong Release of Methane on Mars in Northern Summer 2003 , 2009, Science.

[39]  D. Ming,et al.  Evidence for Calcium Carbonate at the Mars Phoenix Landing Site , 2009, Science.

[40]  P. Christensen,et al.  Evidence for Komatiite-type lavas on Mars from Phobos ISM data and other observations , 1994 .

[41]  S. Gaffey,et al.  Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): Anhydrous carbonate minerals , 1987 .

[42]  S. S. Nedell,et al.  Are there carbonate deposits in the Valles Marineris, Mars? , 1988, Icarus.

[43]  J. B. Dalton,et al.  Identification of spectrally similar materials using the USGS Tetracorder algorithm: the calcite–epidote–chlorite problem , 2004 .

[44]  Carol R. Stoker,et al.  Thermal emission spectra of Mars (5.4–10.5 μm): Evidence for sulfates, carbonates, and hydrates , 1989 .

[45]  Stephane Erard,et al.  The surface of Syrtis Major - Composition of the volcanic substrate and mixing with altered dust and soil , 1993 .

[46]  Thomas Cudahy,et al.  Hyperspectral imaging spectroscopy of a Mars analogue environment at the North Pole Dome, Pilbara Craton, Western Australia , 2005, 1401.5201.

[47]  John W. Salisbury,et al.  Visible and near infrared spectra of minerals and rocks. II. Carbonates , 1971 .

[48]  M. Schaefer Geochemical evolution of the northern Plains of Mars: early hydrosphere, carbonate development, and present morphology. , 1990 .

[49]  A. Zinzi,et al.  Evidence for Mg-rich carbonates on Mars from a 3.9 μm absorption feature , 2009 .

[50]  C. Kreisch Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) Along Track Oversampled (ATO) Observations , 2012 .

[51]  J. B. Moody Serpentinization: a review , 1976 .

[52]  D J Des Marais,et al.  Exploring for a record of ancient Martian life. , 1999, Journal of geophysical research.

[53]  John F. Mustard,et al.  Clay minerals in delta deposits and organic preservation potential on Mars , 2008 .

[54]  Michael E. Zolensky,et al.  Aqueous alteration of the Nakhla meteorite , 1991 .

[55]  N. Izenberg,et al.  Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument , 2008, Nature.

[56]  S. Wentworth,et al.  Carbonates and sulfates in the Chassigny meteorite: Further evidence for aqueous chemistry on the SNC parent planet , 1994 .

[57]  Jean-Pierre Bibring,et al.  Phyllosilicates in the Mawrth Vallis region of Mars , 2007 .

[58]  R. Lowell,et al.  Hydrothermal models for the generation of massive sulfide ore deposits , 1985 .

[59]  M. Carr Retention of an atmosphere on early Mars , 1999 .

[60]  John F. Mustard,et al.  Orbital Identification of Carbonate-Bearing Rocks on Mars , 2008 .

[61]  J. Moore,et al.  Mars: Blueberry fields for ever , 2004, Nature.

[62]  T. McCord,et al.  An observational search for carbonates on Mars , 1989 .

[63]  J. Bandfield,et al.  Spectroscopic Identification of Carbonate Minerals in the Martian Dust , 2003, Science.

[64]  L. Kirkland,et al.  Thermal infrared spectral band detection limits for unidentified surface materials. , 2001, Applied optics.

[65]  R. Kahn The evolution of CO2 on Mars , 1985 .

[66]  J. Gooding Chemical weathering on Mars - Thermodynamic stabilities of primary minerals /and their alteration products/ from mafic igneous rocks , 1978 .

[67]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[68]  F. Pirajno,et al.  Geological setting of Earth's oldest fossils in the ca. 3.5Ga Dresser Formation, Pilbara Craton, Western Australia , 2008 .

[69]  W. White The Carbonate Minerals , 1974 .

[70]  D. D. Des Marais,et al.  Preservation of biological information in thermal spring deposits: developing a strategy for the search for fossil life on Mars. , 1993, Icarus.

[71]  R. Clark,et al.  Discovery of Olivine in the Nili Fossae Region of Mars , 2003, Science.

[72]  R. Clark,et al.  Hydrous carbonates on Mars?: Evidence from Mariner 6/7 infrared spectrometer and ground-based telescopic spectra , 1994 .

[73]  Patrick C. McGuire,et al.  An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data , 2009, 0903.3672.

[74]  David C. Catling,et al.  Is there methane on Mars , 2010 .

[75]  A. Brown,et al.  Short-wave infrared reflectance investigation of sites of paleobiological interest: applications for Mars exploration. , 2004, Astrobiology.

[76]  James M. Dohm,et al.  Inhibition of carbonate synthesis in acidic oceans on early Mars , 2004, Nature.

[77]  G. Neukum,et al.  Stratigraphy in the Mawrth Vallis region through OMEGA, HRSC color imagery and DTM , 2010 .

[78]  L. Leshin,et al.  Insights into the formation of Fe- and Mg-rich aqueous solutions on early Mars provided by the ALH 84001 carbonates , 2009 .

[79]  A. K. Baird,et al.  On the original igneous source of Martian fines , 1981 .

[80]  V. Hamilton,et al.  Evidence for extensive, olivine-rich bedrock on Mars , 2005 .

[81]  Y. Langevin,et al.  Olivine and Pyroxene Diversity in the Crust of Mars , 2005, Science.

[82]  David C. Catling,et al.  A chemical model for evaporites on early Mars: Possible sedimentary tracers of the early climate and implications for exploration , 1999 .

[83]  R. Clark,et al.  High spectral resolution reflectance spectroscopy of minerals , 1990 .

[84]  John F. Mustard,et al.  Identification of hydrated silicate minerals on Mars using MRO‐CRISM: Geologic context near Nili Fossae and implications for aqueous alteration , 2009 .

[85]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[86]  David C. Catling,et al.  Alteration Assemblages in Martian Meteorites: Implications for Near-Surface Processes , 2001 .