Temperature-driven topological transition in 1T'-MoTe2

[1]  Quansheng Wu,et al.  Trivial and topological Fermi arcs in the type-II Weyl semimetal candidate MoTe2 , 2017 .

[2]  Yan-Feng Chen,et al.  Experimental Observation of Anisotropic Adler-Bell-Jackiw Anomaly in Type-II Weyl Semimetal WTe_{1.98} Crystals at the Quasiclassical Regime. , 2016, Physical review letters.

[3]  C. Felser,et al.  Signature of type-II Weyl semimetal phase in MoTe2 , 2016, Nature Communications.

[4]  Zu-Yan Xu,et al.  Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2 , 2016 .

[5]  Su-Yang Xu,et al.  Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface. , 2016, Physical Review Letters.

[6]  Guanghou Wang,et al.  Discovery of a new type of topological Weyl fermion semimetal state in MoxW1−xTe2 , 2016, Nature Communications.

[7]  F. Miao,et al.  Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe2 , 2016, Nature Communications.

[8]  Timur K. Kim,et al.  Fermi Arcs and Their Topological Character in the Candidate Type-II Weyl Semimetal MoTe 2 , 2016, 1604.08228.

[9]  Yang Zhang,et al.  Strong Intrinsic Spin Hall Effect in the TaAs Family of Weyl Semimetals. , 2016, Physical review letters.

[10]  P. Canfield,et al.  Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2 , 2016, 1604.05176.

[11]  S. M. Walker,et al.  Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WT e 2 , 2016, 1604.02411.

[12]  Z. J. Wang,et al.  Discovery of Weyl semimetal state violating Lorentz invariance in MoTe2 , 2016, 1604.02116.

[13]  Lin Zhao,et al.  Electronic Evidence for Type II Weyl Semimetal State in MoTe2 , 2016, 1604.01706.

[14]  W. Duan,et al.  Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2 , 2016, Nature Physics.

[15]  Timothy M. McCormick,et al.  Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2. , 2016, Nature materials.

[16]  Shanjuan Jiang,et al.  Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal , 2016, Science.

[17]  Q. Gibson,et al.  The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. , 2016, Nature materials.

[18]  Su-Yang Xu,et al.  Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal , 2016, Nature Communications.

[19]  C. Felser,et al.  Quantum oscillations and the Fermi surface topology of the Weyl semimetal NbP , 2015, 1512.04229.

[20]  M. Troyer,et al.  MoTe_{2}: A Type-II Weyl Topological Metal. , 2015, Physical review letters.

[21]  Su-Yang Xu,et al.  Atomic-Scale Visualization of Quantum Interference on a Weyl Semimetal Surface by Scanning Tunneling Microscopy. , 2015, ACS nano.

[22]  Su-Yang Xu,et al.  Prediction of an arc-tunable Weyl Fermion metallic state in MoxW1−xTe2 , 2015, Nature Communications.

[23]  X. Dai,et al.  Observation of Weyl nodes and Fermi arcs in tantalum phosphide , 2015, Nature Communications.

[24]  C. Felser,et al.  Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP , 2015, Nature Communications.

[25]  Su-Yang Xu,et al.  New type of Weyl semimetal with quadratic double Weyl fermions , 2015, Proceedings of the National Academy of Sciences.

[26]  C. Felser,et al.  Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. , 2016, Nature materials.

[27]  R. Cava,et al.  Evidence for the chiral anomaly in the Dirac semimetal Na3Bi , 2015, Science.

[28]  Su-Yang Xu,et al.  Observation of surface states derived from topological Fermi arcs in the Weyl semimetal NbP , 2015, 1509.07465.

[29]  C. Felser,et al.  Erratum: Weyl semimetal phase in the non-centrosymmetric compound TaAs , 2015, Nature Physics.

[30]  Su-Yang Xu,et al.  Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide , 2015, Nature Physics.

[31]  C. Felser,et al.  Prediction of Weyl semimetal in orthorhombicMoTe2 , 2015, Physical Review B.

[32]  Su-Yang Xu,et al.  Experimental discovery of a topological Weyl semimetal state in TaP , 2015, Science Advances.

[33]  E. Berg,et al.  Current at a distance and resonant transparency in Weyl semimetals , 2015, 1508.03047.

[34]  Xi Dai,et al.  Type-II Weyl semimetals , 2015, Nature.

[35]  Su-Yang Xu,et al.  A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class , 2015, Nature Communications.

[36]  A. Burkov Negative longitudinal magnetoresistance in Dirac and Weyl metals , 2015, 1505.01849.

[37]  X. Dai,et al.  Observation of Weyl nodes in TaAs , 2015, Nature Physics.

[38]  X. Dai,et al.  Observation of the Chiral-Anomaly-Induced Negative Magnetoresistance in 3D Weyl Semimetal TaAs , 2015, 1503.01304.

[39]  Xianhui Chen Experimental discovery of Weyl semimetal TaAs , 2015, Science China Materials.

[40]  C. Felser,et al.  Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP , 2015, Nature Physics.

[41]  Shuang Jia,et al.  Discovery of a Weyl fermion semimetal and topological Fermi arcs , 2015, Science.

[42]  M. Soljačić,et al.  Experimental observation of Weyl points , 2015, Science.

[43]  X. Dai,et al.  Weyl Semimetal Phase in Noncentrosymmetric Transition-Metal Monophosphides , 2014, 1501.00060.

[44]  A. Millis,et al.  Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe2. , 2014, Physical review letters.

[45]  Q. Gibson,et al.  Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd₃As₂. , 2014, Nature materials.

[46]  A. Vishwanath,et al.  Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals , 2014, Nature Communications.

[47]  Z. J. Wang,et al.  Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi , 2013, Science.

[48]  Q. Gibson,et al.  Experimental realization of a three-dimensional Dirac semimetal. , 2013, Physical review letters.

[49]  Su-Yang Xu,et al.  Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 , 2013, Nature Communications.

[50]  L. Li,et al.  Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. , 2013, Physical review letters.

[51]  A. Vishwanath,et al.  Probing the chiral anomaly with nonlocal transport in three dimensional topological semimetals , 2013, 1306.1234.

[52]  Xiaoliang Qi,et al.  Recent developments in transport phenomena in Weyl semimetals , 2013, 1309.4464.

[53]  B. Spivak,et al.  Chiral Anomaly and Classical Negative Magnetoresistance of Weyl Metals , 2012, 1206.1627.

[54]  M Zahid Hasan,et al.  Topological electronic structure and Weyl semimetal in the TlBiSe2class of semiconductors , 2012, 1209.5896.

[55]  G. Volovik,et al.  Topological Fermi arcs in superfluid $^3$He , 2012, 1209.3368.

[56]  A. Zyuzin,et al.  Topological response in Weyl semimetals and the chiral anomaly , 2012, 1206.1868.

[57]  Xi Dai,et al.  Multi-Weyl topological semimetals stabilized by point group symmetry. , 2011, Physical review letters.

[58]  P. Roushan,et al.  Spatial Fluctuations of Helical Dirac Fermions on the Surface of Topological Insulators , 2011, 1108.2089.

[59]  Xi Dai,et al.  Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. , 2011, Physical review letters.

[60]  A. Damascelli,et al.  Rashba spin-splitting control at the surface of the topological insulator Bi2Se3. , 2011, Physical review letters.

[61]  Leon Balents,et al.  Weyl semimetal in a topological insulator multilayer. , 2011, Physical review letters.

[62]  Klaus Kern,et al.  Reactive chemical doping of the Bi2Se3 topological insulator. , 2011, Physical review letters.

[63]  Ashvin Vishwanath,et al.  Subject Areas : Strongly Correlated Materials A Viewpoint on : Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates , 2011 .

[64]  P. Roushan,et al.  Topological surface states protected from backscattering by chiral spin texture , 2009, Nature.

[65]  L. Patthey,et al.  Localization of surface states in disordered step lattices. , 2004, Physical review letters.

[66]  E. Fradkin,et al.  How to detect fluctuating stripes in the high-temperature superconductors , 2003 .

[67]  E. Heller,et al.  Colloquium: Theory of quantum corrals and quantum mirages , 2002, cond-mat/0211607.

[68]  Dung-Hai Lee,et al.  Quasiparticle scattering interference in high-temperature superconductors , 2002, cond-mat/0205118.

[69]  N. Marzari,et al.  Maximally localized generalized Wannier functions for composite energy bands , 1997, cond-mat/9707145.

[70]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[71]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[72]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[73]  W. G. Dawson,et al.  Electronic structure and crystallography of MoTe2 and WTe2 , 1987 .

[74]  M. Sancho,et al.  Highly convergent schemes for the calculation of bulk and surface Green functions , 1985 .

[75]  Holger Bech Nielsen,et al.  The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal , 1983 .

[76]  B. E. Brown The crystal structures of WTe2 and high‐temperature MoTe2 , 1966 .

[77]  H. Weyl GRAVITATION AND THE ELECTRON. , 1929, Proceedings of the National Academy of Sciences of the United States of America.