Rewriting and Typed Lambda Calculi

Datatypes for Real Numbers in Type Theory . . . . . . . . . . . . . . . . 208 Mart́ın Hötzel Escardó and Alex Simpson Self Types for Dependently Typed Lambda Encodings . . . . . . . . . . . . . . . . 224 Peng Fu and Aaron Stump First-Order Formative Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240 Carsten Fuhs and Cynthia Kop Automated Complexity Analysis Based on Context-Sensitive Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257 Nao Hirokawa and Georg Moser Amortised Resource Analysis and Typed Polynomial Interpretations . . . . 272 Martin Hofmann and Georg Moser Confluence by Critical Pair Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 Jiaxiang Liu, Nachum Dershowitz, and Jean-Pierre Jouannaud Proof Terms for Infinitary Rewriting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 Carlos Lombardi, Alejandro Rı́os, and Roel de Vrijer Construction of Retractile Proof Structures . . . . . . . . . . . . . . . . . . . . . . . . . 319 Roberto Maieli Local States in String Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334 Paul-André Melliès Reduction System for Extensional Lambda-mu Calculus . . . . . . . . . . . . . . 349 Koji Nakazawa and Tomoharu Nagai The Structural Theory of Pure Type Systems . . . . . . . . . . . . . . . . . . . . . . . . 364 Cody Roux and Floris van Doorn Applicative Mayand Should-Simulation in the Call-by-Value Lambda Calculus with AMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379 Manfred Schmidt-Schauß and David Sabel Implicational Relevance Logic is 2-ExpTime-Complete . . . . . . . . . . . . . . . 395 Sylvain Schmitz Near Semi-rings and Lambda Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410 Rick Statman Table of

[1]  Georg Moser,et al.  Complexity Analysis of Term Rewriting Based on Matrix and Context Dependent Interpretations , 2008, FSTTCS.

[2]  Paula Severi,et al.  An Extensional Böhm Model , 2002, RTA.

[3]  Jan Willem Klop,et al.  Highlights in infinitary rewriting and lambda calculus , 2012, Theor. Comput. Sci..

[4]  Christian Sternageland Signature Extensions Preserve Termination An Alternative Proof via Dependency Pairs , 2010 .

[5]  Pawel Urzyczyn,et al.  The emptiness problem for intersection types , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[6]  René Thiemann Formalizing Bounded Increase , 2013, ITP.

[7]  Benjamin C. Pierce,et al.  Types and programming languages: the next generation , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[8]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[9]  Bart Jacobs,et al.  An introduction to (co)algebra and (co)induction , 2011, Advanced Topics in Bisimulation and Coinduction.

[10]  Lars Kristiansen,et al.  On the computational complexity of imperative programming languages , 2004, Theor. Comput. Sci..

[11]  John C. Mitchell,et al.  Polymorphic Type Inference and Containment , 1988, Inf. Comput..

[12]  Terese Term rewriting systems , 2003, Cambridge tracts in theoretical computer science.

[13]  Aart Middeldorp,et al.  Satisfiability of Non-linear (Ir)rational Arithmetic , 2010, LPAR.

[14]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[15]  Felix Joachimski Confluence of the coinductive [lambda]-calculus , 2004, Theor. Comput. Sci..

[16]  René Thiemann Implementing field extensions of the form Q [ √ b ] ∗ , 2015 .

[17]  Jan Willem Klop,et al.  Infinitary Lambda Calculi and Böhm Models , 1995, RTA.

[18]  Jerzy Tiuryn,et al.  The subtyping problem for second-order types is undecidable , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[19]  Harald Zankl,et al.  Modular Complexity Analysis via Relative Complexity , 2010, RTA.

[20]  Andrew Polonsky,et al.  Infinitary Rewriting Coinductively , 2011, TYPES.

[21]  Raúl Gutiérrez,et al.  Context-sensitive dependency pairs , 2006, Inf. Comput..

[22]  René Thiemann,et al.  Certification of Termination Proofs Using CeTA , 2009, TPHOLs.

[23]  Hendrik Pieter Barendregt,et al.  Applications of infinitary lambda calculus , 2009, Inf. Comput..

[24]  C.-H. Luke Ong,et al.  Non-determinism in a functional setting , 1993, [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science.

[25]  Jan Willem Klop,et al.  Infinitary Lambda Calculus , 1997, Theoretical Computer Science.

[26]  Adam Chlipala Programming with Dependent Types , 2013 .

[27]  Martin Hofmann,et al.  Resource Aware ML , 2012, CAV.

[28]  Eduardo Giménez,et al.  Codifying Guarded Definitions with Recursive Schemes , 1994, TYPES.

[29]  Brigitte Pientka,et al.  Wellfounded recursion with copatterns: a unified approach to termination and productivity , 2013, ICFP.

[30]  R. Meyer,et al.  The semantics of entailment — III , 1973 .